Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{sx}{h}\text{, }&s\neq 0\text{ and }h\neq 0\\k\in \mathrm{C}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{sx}{k}\text{, }&s\neq 0\text{ and }x\neq 0\text{ and }k\neq 0\\h\neq 0\text{, }&\left(m=0\text{ and }s\neq 0\right)\text{ or }\left(s\neq 0\text{ and }k=0\text{ and }x=0\right)\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{sx}{h}\text{, }&s\neq 0\text{ and }h\neq 0\\k\in \mathrm{R}\text{, }&m=0\text{ and }h\neq 0\text{ and }s\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
1hkm=xsm
Multiply both sides of the equation by hs, the least common multiple of s,h.
hkm=msx
Reorder the terms.
hmk=msx
The equation is in standard form.
\frac{hmk}{hm}=\frac{msx}{hm}
Divide both sides by hm.
k=\frac{msx}{hm}
Dividing by hm undoes the multiplication by hm.
k=\frac{sx}{h}
Divide msx by hm.
1hkm=xsm
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by hs, the least common multiple of s,h.
hkm=msx
Reorder the terms.
kmh=msx
The equation is in standard form.
\frac{kmh}{km}=\frac{msx}{km}
Divide both sides by km.
h=\frac{msx}{km}
Dividing by km undoes the multiplication by km.
h=\frac{sx}{k}
Divide msx by km.
h=\frac{sx}{k}\text{, }h\neq 0
Variable h cannot be equal to 0.
1hkm=xsm
Multiply both sides of the equation by hs, the least common multiple of s,h.
hkm=msx
Reorder the terms.
hmk=msx
The equation is in standard form.
\frac{hmk}{hm}=\frac{msx}{hm}
Divide both sides by hm.
k=\frac{msx}{hm}
Dividing by hm undoes the multiplication by hm.
k=\frac{sx}{h}
Divide msx by hm.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}