Evaluate
\frac{143}{133}\approx 1.07518797
Factor
\frac{11 \cdot 13}{7 \cdot 19} = 1\frac{10}{133} = 1.0751879699248121
Share
Copied to clipboard
\frac{\left(1\times 7+6\right)\times 11}{7\left(1\times 11+8\right)}
Divide \frac{1\times 7+6}{7} by \frac{1\times 11+8}{11} by multiplying \frac{1\times 7+6}{7} by the reciprocal of \frac{1\times 11+8}{11}.
\frac{\left(7+6\right)\times 11}{7\left(1\times 11+8\right)}
Multiply 1 and 7 to get 7.
\frac{13\times 11}{7\left(1\times 11+8\right)}
Add 7 and 6 to get 13.
\frac{143}{7\left(1\times 11+8\right)}
Multiply 13 and 11 to get 143.
\frac{143}{7\left(11+8\right)}
Multiply 1 and 11 to get 11.
\frac{143}{7\times 19}
Add 11 and 8 to get 19.
\frac{143}{133}
Multiply 7 and 19 to get 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}