Evaluate
\frac{377}{3}\approx 125.666666667
Factor
\frac{13 \cdot 29}{3} = 125\frac{2}{3} = 125.66666666666667
Share
Copied to clipboard
\frac{\left(1\times 9+5\right)\times 3}{9\left(2\times 3+1\right)}-\left(-325\times \frac{5}{13}\right)
Divide \frac{1\times 9+5}{9} by \frac{2\times 3+1}{3} by multiplying \frac{1\times 9+5}{9} by the reciprocal of \frac{2\times 3+1}{3}.
\frac{5+9}{3\left(1+2\times 3\right)}-\left(-325\times \frac{5}{13}\right)
Cancel out 3 in both numerator and denominator.
\frac{14}{3\left(1+2\times 3\right)}-\left(-325\times \frac{5}{13}\right)
Add 5 and 9 to get 14.
\frac{14}{3\left(1+6\right)}-\left(-325\times \frac{5}{13}\right)
Multiply 2 and 3 to get 6.
\frac{14}{3\times 7}-\left(-325\times \frac{5}{13}\right)
Add 1 and 6 to get 7.
\frac{14}{21}-\left(-325\times \frac{5}{13}\right)
Multiply 3 and 7 to get 21.
\frac{2}{3}-\left(-325\times \frac{5}{13}\right)
Reduce the fraction \frac{14}{21} to lowest terms by extracting and canceling out 7.
\frac{2}{3}-\frac{-325\times 5}{13}
Express -325\times \frac{5}{13} as a single fraction.
\frac{2}{3}-\frac{-1625}{13}
Multiply -325 and 5 to get -1625.
\frac{2}{3}-\left(-125\right)
Divide -1625 by 13 to get -125.
\frac{2}{3}+125
The opposite of -125 is 125.
\frac{2}{3}+\frac{375}{3}
Convert 125 to fraction \frac{375}{3}.
\frac{2+375}{3}
Since \frac{2}{3} and \frac{375}{3} have the same denominator, add them by adding their numerators.
\frac{377}{3}
Add 2 and 375 to get 377.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}