Evaluate
\frac{161}{24}\approx 6.708333333
Factor
\frac{7 \cdot 23}{2 ^ {3} \cdot 3} = 6\frac{17}{24} = 6.708333333333333
Share
Copied to clipboard
\frac{6+5}{6}+\frac{5\times 4+3}{4}-\frac{7}{8}
Multiply 1 and 6 to get 6.
\frac{11}{6}+\frac{5\times 4+3}{4}-\frac{7}{8}
Add 6 and 5 to get 11.
\frac{11}{6}+\frac{20+3}{4}-\frac{7}{8}
Multiply 5 and 4 to get 20.
\frac{11}{6}+\frac{23}{4}-\frac{7}{8}
Add 20 and 3 to get 23.
\frac{22}{12}+\frac{69}{12}-\frac{7}{8}
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{23}{4} to fractions with denominator 12.
\frac{22+69}{12}-\frac{7}{8}
Since \frac{22}{12} and \frac{69}{12} have the same denominator, add them by adding their numerators.
\frac{91}{12}-\frac{7}{8}
Add 22 and 69 to get 91.
\frac{182}{24}-\frac{21}{24}
Least common multiple of 12 and 8 is 24. Convert \frac{91}{12} and \frac{7}{8} to fractions with denominator 24.
\frac{182-21}{24}
Since \frac{182}{24} and \frac{21}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{161}{24}
Subtract 21 from 182 to get 161.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}