1 \frac { 34 } { 63 } \quad \text { 25. } \frac { 7 } { 39 } + \frac { 11 } { 26 } + \frac { 2 } { 3 } + \frac { 8 } { 9 }
Evaluate
\frac{6239}{702}\approx 8.887464387
Factor
\frac{17 \cdot 367}{2 \cdot 3 ^ {3} \cdot 13} = 8\frac{623}{702} = 8.887464387464387
Share
Copied to clipboard
\frac{63+34}{63}\times 25\times \frac{7}{39}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Multiply 1 and 63 to get 63.
\frac{97}{63}\times 25\times \frac{7}{39}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Add 63 and 34 to get 97.
\frac{97\times 25}{63}\times \frac{7}{39}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Express \frac{97}{63}\times 25 as a single fraction.
\frac{2425}{63}\times \frac{7}{39}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Multiply 97 and 25 to get 2425.
\frac{2425\times 7}{63\times 39}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Multiply \frac{2425}{63} times \frac{7}{39} by multiplying numerator times numerator and denominator times denominator.
\frac{16975}{2457}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Do the multiplications in the fraction \frac{2425\times 7}{63\times 39}.
\frac{2425}{351}+\frac{11}{26}+\frac{2}{3}+\frac{8}{9}
Reduce the fraction \frac{16975}{2457} to lowest terms by extracting and canceling out 7.
\frac{4850}{702}+\frac{297}{702}+\frac{2}{3}+\frac{8}{9}
Least common multiple of 351 and 26 is 702. Convert \frac{2425}{351} and \frac{11}{26} to fractions with denominator 702.
\frac{4850+297}{702}+\frac{2}{3}+\frac{8}{9}
Since \frac{4850}{702} and \frac{297}{702} have the same denominator, add them by adding their numerators.
\frac{5147}{702}+\frac{2}{3}+\frac{8}{9}
Add 4850 and 297 to get 5147.
\frac{5147}{702}+\frac{468}{702}+\frac{8}{9}
Least common multiple of 702 and 3 is 702. Convert \frac{5147}{702} and \frac{2}{3} to fractions with denominator 702.
\frac{5147+468}{702}+\frac{8}{9}
Since \frac{5147}{702} and \frac{468}{702} have the same denominator, add them by adding their numerators.
\frac{5615}{702}+\frac{8}{9}
Add 5147 and 468 to get 5615.
\frac{5615}{702}+\frac{624}{702}
Least common multiple of 702 and 9 is 702. Convert \frac{5615}{702} and \frac{8}{9} to fractions with denominator 702.
\frac{5615+624}{702}
Since \frac{5615}{702} and \frac{624}{702} have the same denominator, add them by adding their numerators.
\frac{6239}{702}
Add 5615 and 624 to get 6239.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}