Solve for x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Share
Copied to clipboard
1\times 3=\frac{3}{4}x\times \frac{1\times 5+1}{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
3=\frac{3}{4}x\times \frac{1\times 5+1}{5}
Multiply 1 and 3 to get 3.
3=\frac{3}{4}x\times \frac{5+1}{5}
Multiply 1 and 5 to get 5.
3=\frac{3}{4}x\times \frac{6}{5}
Add 5 and 1 to get 6.
3=\frac{3\times 6}{4\times 5}x
Multiply \frac{3}{4} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
3=\frac{18}{20}x
Do the multiplications in the fraction \frac{3\times 6}{4\times 5}.
3=\frac{9}{10}x
Reduce the fraction \frac{18}{20} to lowest terms by extracting and canceling out 2.
\frac{9}{10}x=3
Swap sides so that all variable terms are on the left hand side.
x=3\times \frac{10}{9}
Multiply both sides by \frac{10}{9}, the reciprocal of \frac{9}{10}.
x=\frac{3\times 10}{9}
Express 3\times \frac{10}{9} as a single fraction.
x=\frac{30}{9}
Multiply 3 and 10 to get 30.
x=\frac{10}{3}
Reduce the fraction \frac{30}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}