Evaluate
-\frac{20y}{3}-100
Expand
-\frac{20y}{3}-100
Graph
Share
Copied to clipboard
\frac{7+3}{7}\times 6\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Multiply 1 and 7 to get 7.
\frac{10}{7}\times 6\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Add 7 and 3 to get 10.
\frac{10\times 6}{7}\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Express \frac{10}{7}\times 6 as a single fraction.
\frac{60}{7}\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Multiply 10 and 6 to get 60.
\frac{60}{7}\left(-14-\frac{7}{9}y+\frac{6+1}{3}\right)
Multiply 2 and 3 to get 6.
\frac{60}{7}\left(-14-\frac{7}{9}y+\frac{7}{3}\right)
Add 6 and 1 to get 7.
\frac{60}{7}\left(-\frac{42}{3}-\frac{7}{9}y+\frac{7}{3}\right)
Convert -14 to fraction -\frac{42}{3}.
\frac{60}{7}\left(\frac{-42+7}{3}-\frac{7}{9}y\right)
Since -\frac{42}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
\frac{60}{7}\left(-\frac{35}{3}-\frac{7}{9}y\right)
Add -42 and 7 to get -35.
\frac{60}{7}\left(-\frac{35}{3}\right)+\frac{60}{7}\left(-\frac{7}{9}\right)y
Use the distributive property to multiply \frac{60}{7} by -\frac{35}{3}-\frac{7}{9}y.
\frac{60\left(-35\right)}{7\times 3}+\frac{60}{7}\left(-\frac{7}{9}\right)y
Multiply \frac{60}{7} times -\frac{35}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-2100}{21}+\frac{60}{7}\left(-\frac{7}{9}\right)y
Do the multiplications in the fraction \frac{60\left(-35\right)}{7\times 3}.
-100+\frac{60}{7}\left(-\frac{7}{9}\right)y
Divide -2100 by 21 to get -100.
-100+\frac{60\left(-7\right)}{7\times 9}y
Multiply \frac{60}{7} times -\frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
-100+\frac{-420}{63}y
Do the multiplications in the fraction \frac{60\left(-7\right)}{7\times 9}.
-100-\frac{20}{3}y
Reduce the fraction \frac{-420}{63} to lowest terms by extracting and canceling out 21.
\frac{7+3}{7}\times 6\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Multiply 1 and 7 to get 7.
\frac{10}{7}\times 6\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Add 7 and 3 to get 10.
\frac{10\times 6}{7}\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Express \frac{10}{7}\times 6 as a single fraction.
\frac{60}{7}\left(-14-\frac{7}{9}y+\frac{2\times 3+1}{3}\right)
Multiply 10 and 6 to get 60.
\frac{60}{7}\left(-14-\frac{7}{9}y+\frac{6+1}{3}\right)
Multiply 2 and 3 to get 6.
\frac{60}{7}\left(-14-\frac{7}{9}y+\frac{7}{3}\right)
Add 6 and 1 to get 7.
\frac{60}{7}\left(-\frac{42}{3}-\frac{7}{9}y+\frac{7}{3}\right)
Convert -14 to fraction -\frac{42}{3}.
\frac{60}{7}\left(\frac{-42+7}{3}-\frac{7}{9}y\right)
Since -\frac{42}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
\frac{60}{7}\left(-\frac{35}{3}-\frac{7}{9}y\right)
Add -42 and 7 to get -35.
\frac{60}{7}\left(-\frac{35}{3}\right)+\frac{60}{7}\left(-\frac{7}{9}\right)y
Use the distributive property to multiply \frac{60}{7} by -\frac{35}{3}-\frac{7}{9}y.
\frac{60\left(-35\right)}{7\times 3}+\frac{60}{7}\left(-\frac{7}{9}\right)y
Multiply \frac{60}{7} times -\frac{35}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-2100}{21}+\frac{60}{7}\left(-\frac{7}{9}\right)y
Do the multiplications in the fraction \frac{60\left(-35\right)}{7\times 3}.
-100+\frac{60}{7}\left(-\frac{7}{9}\right)y
Divide -2100 by 21 to get -100.
-100+\frac{60\left(-7\right)}{7\times 9}y
Multiply \frac{60}{7} times -\frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
-100+\frac{-420}{63}y
Do the multiplications in the fraction \frac{60\left(-7\right)}{7\times 9}.
-100-\frac{20}{3}y
Reduce the fraction \frac{-420}{63} to lowest terms by extracting and canceling out 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}