Evaluate
\frac{11}{30}\approx 0.366666667
Factor
\frac{11}{2 \cdot 3 \cdot 5} = 0.36666666666666664
Share
Copied to clipboard
\frac{1\times 5+3}{5\times 6}+\frac{2\times 2+1}{2}\times \frac{1}{25}
Express \frac{\frac{1\times 5+3}{5}}{6} as a single fraction.
\frac{5+3}{5\times 6}+\frac{2\times 2+1}{2}\times \frac{1}{25}
Multiply 1 and 5 to get 5.
\frac{8}{5\times 6}+\frac{2\times 2+1}{2}\times \frac{1}{25}
Add 5 and 3 to get 8.
\frac{8}{30}+\frac{2\times 2+1}{2}\times \frac{1}{25}
Multiply 5 and 6 to get 30.
\frac{4}{15}+\frac{2\times 2+1}{2}\times \frac{1}{25}
Reduce the fraction \frac{8}{30} to lowest terms by extracting and canceling out 2.
\frac{4}{15}+\frac{4+1}{2}\times \frac{1}{25}
Multiply 2 and 2 to get 4.
\frac{4}{15}+\frac{5}{2}\times \frac{1}{25}
Add 4 and 1 to get 5.
\frac{4}{15}+\frac{5\times 1}{2\times 25}
Multiply \frac{5}{2} times \frac{1}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{15}+\frac{5}{50}
Do the multiplications in the fraction \frac{5\times 1}{2\times 25}.
\frac{4}{15}+\frac{1}{10}
Reduce the fraction \frac{5}{50} to lowest terms by extracting and canceling out 5.
\frac{8}{30}+\frac{3}{30}
Least common multiple of 15 and 10 is 30. Convert \frac{4}{15} and \frac{1}{10} to fractions with denominator 30.
\frac{8+3}{30}
Since \frac{8}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{11}{30}
Add 8 and 3 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}