Evaluate
0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\frac{9+2}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0.6}{1.45}}
Multiply 1 and 9 to get 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{1\times 9+1}{9}\times 0.6}{1.45}}
Add 9 and 2 to get 11.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{9+1}{9}\times 0.6}{1.45}}
Multiply 1 and 9 to get 9.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10}{9}\times 0.6}{1.45}}
Add 9 and 1 to get 10.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10}{9}\times \frac{3}{5}}{1.45}}
Convert decimal number 0.6 to fraction \frac{6}{10}. Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{10\times 3}{9\times 5}}{1.45}}
Multiply \frac{10}{9} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{30}{45}}{1.45}}
Do the multiplications in the fraction \frac{10\times 3}{9\times 5}.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{2}{3}}{1.45}}
Reduce the fraction \frac{30}{45} to lowest terms by extracting and canceling out 15.
\frac{\frac{11}{9}}{3-\frac{\frac{5}{36}+\frac{24}{36}}{1.45}}
Least common multiple of 36 and 3 is 36. Convert \frac{5}{36} and \frac{2}{3} to fractions with denominator 36.
\frac{\frac{11}{9}}{3-\frac{\frac{5+24}{36}}{1.45}}
Since \frac{5}{36} and \frac{24}{36} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{9}}{3-\frac{\frac{29}{36}}{1.45}}
Add 5 and 24 to get 29.
\frac{\frac{11}{9}}{3-\frac{29}{36\times 1.45}}
Express \frac{\frac{29}{36}}{1.45} as a single fraction.
\frac{\frac{11}{9}}{3-\frac{29}{52.2}}
Multiply 36 and 1.45 to get 52.2.
\frac{\frac{11}{9}}{3-\frac{290}{522}}
Expand \frac{29}{52.2} by multiplying both numerator and the denominator by 10.
\frac{\frac{11}{9}}{3-\frac{5}{9}}
Reduce the fraction \frac{290}{522} to lowest terms by extracting and canceling out 58.
\frac{\frac{11}{9}}{\frac{27}{9}-\frac{5}{9}}
Convert 3 to fraction \frac{27}{9}.
\frac{\frac{11}{9}}{\frac{27-5}{9}}
Since \frac{27}{9} and \frac{5}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11}{9}}{\frac{22}{9}}
Subtract 5 from 27 to get 22.
\frac{11}{9}\times \frac{9}{22}
Divide \frac{11}{9} by \frac{22}{9} by multiplying \frac{11}{9} by the reciprocal of \frac{22}{9}.
\frac{11\times 9}{9\times 22}
Multiply \frac{11}{9} times \frac{9}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{22}
Cancel out 9 in both numerator and denominator.
\frac{1}{2}
Reduce the fraction \frac{11}{22} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}