Evaluate
\frac{38}{15}\approx 2.533333333
Factor
\frac{2 \cdot 19}{3 \cdot 5} = 2\frac{8}{15} = 2.533333333333333
Share
Copied to clipboard
\frac{3+2}{3}+\frac{5\times 5+2}{5}\times 5-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Multiply 1 and 3 to get 3.
\frac{5}{3}+\frac{5\times 5+2}{5}\times 5-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Add 3 and 2 to get 5.
\frac{5}{3}+\frac{25+2}{5}\times 5-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Multiply 5 and 5 to get 25.
\frac{5}{3}+\frac{27}{5}\times 5-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Add 25 and 2 to get 27.
\frac{5}{3}+27-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Cancel out 5 and 5.
\frac{5}{3}+\frac{81}{3}-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Convert 27 to fraction \frac{81}{3}.
\frac{5+81}{3}-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Since \frac{5}{3} and \frac{81}{3} have the same denominator, add them by adding their numerators.
\frac{86}{3}-7\left(\frac{5\times 5+2}{5}-\frac{1\times 3+2}{3}\right)
Add 5 and 81 to get 86.
\frac{86}{3}-7\left(\frac{25+2}{5}-\frac{1\times 3+2}{3}\right)
Multiply 5 and 5 to get 25.
\frac{86}{3}-7\left(\frac{27}{5}-\frac{1\times 3+2}{3}\right)
Add 25 and 2 to get 27.
\frac{86}{3}-7\left(\frac{27}{5}-\frac{3+2}{3}\right)
Multiply 1 and 3 to get 3.
\frac{86}{3}-7\left(\frac{27}{5}-\frac{5}{3}\right)
Add 3 and 2 to get 5.
\frac{86}{3}-7\left(\frac{81}{15}-\frac{25}{15}\right)
Least common multiple of 5 and 3 is 15. Convert \frac{27}{5} and \frac{5}{3} to fractions with denominator 15.
\frac{86}{3}-7\times \frac{81-25}{15}
Since \frac{81}{15} and \frac{25}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{86}{3}-7\times \frac{56}{15}
Subtract 25 from 81 to get 56.
\frac{86}{3}-\frac{7\times 56}{15}
Express 7\times \frac{56}{15} as a single fraction.
\frac{86}{3}-\frac{392}{15}
Multiply 7 and 56 to get 392.
\frac{430}{15}-\frac{392}{15}
Least common multiple of 3 and 15 is 15. Convert \frac{86}{3} and \frac{392}{15} to fractions with denominator 15.
\frac{430-392}{15}
Since \frac{430}{15} and \frac{392}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{38}{15}
Subtract 392 from 430 to get 38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}