Evaluate
\frac{20}{21}\approx 0.952380952
Factor
\frac{2 ^ {2} \cdot 5}{3 \cdot 7} = 0.9523809523809523
Quiz
Arithmetic
5 problems similar to:
1 \frac { 13 } { 14 } - 2 \frac { 5 } { 6 } + 1 \frac { 6 } { 7 }
Share
Copied to clipboard
\frac{14+13}{14}-\frac{2\times 6+5}{6}+\frac{1\times 7+6}{7}
Multiply 1 and 14 to get 14.
\frac{27}{14}-\frac{2\times 6+5}{6}+\frac{1\times 7+6}{7}
Add 14 and 13 to get 27.
\frac{27}{14}-\frac{12+5}{6}+\frac{1\times 7+6}{7}
Multiply 2 and 6 to get 12.
\frac{27}{14}-\frac{17}{6}+\frac{1\times 7+6}{7}
Add 12 and 5 to get 17.
\frac{81}{42}-\frac{119}{42}+\frac{1\times 7+6}{7}
Least common multiple of 14 and 6 is 42. Convert \frac{27}{14} and \frac{17}{6} to fractions with denominator 42.
\frac{81-119}{42}+\frac{1\times 7+6}{7}
Since \frac{81}{42} and \frac{119}{42} have the same denominator, subtract them by subtracting their numerators.
\frac{-38}{42}+\frac{1\times 7+6}{7}
Subtract 119 from 81 to get -38.
-\frac{19}{21}+\frac{1\times 7+6}{7}
Reduce the fraction \frac{-38}{42} to lowest terms by extracting and canceling out 2.
-\frac{19}{21}+\frac{7+6}{7}
Multiply 1 and 7 to get 7.
-\frac{19}{21}+\frac{13}{7}
Add 7 and 6 to get 13.
-\frac{19}{21}+\frac{39}{21}
Least common multiple of 21 and 7 is 21. Convert -\frac{19}{21} and \frac{13}{7} to fractions with denominator 21.
\frac{-19+39}{21}
Since -\frac{19}{21} and \frac{39}{21} have the same denominator, add them by adding their numerators.
\frac{20}{21}
Add -19 and 39 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}