Solve for y
y=\frac{135}{142}\approx 0.950704225
Graph
Share
Copied to clipboard
12\left(1\times 9+1\right)y+42y-20y=27\left(1\times 4+1\right)
Multiply both sides of the equation by 108, the least common multiple of 9,18,27,4.
12\left(9+1\right)y+42y-20y=27\left(1\times 4+1\right)
Multiply 1 and 9 to get 9.
12\times 10y+42y-20y=27\left(1\times 4+1\right)
Add 9 and 1 to get 10.
120y+42y-20y=27\left(1\times 4+1\right)
Multiply 12 and 10 to get 120.
162y-20y=27\left(1\times 4+1\right)
Combine 120y and 42y to get 162y.
142y=27\left(1\times 4+1\right)
Combine 162y and -20y to get 142y.
142y=27\left(4+1\right)
Multiply 1 and 4 to get 4.
142y=27\times 5
Add 4 and 1 to get 5.
142y=135
Multiply 27 and 5 to get 135.
y=\frac{135}{142}
Divide both sides by 142.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}