Evaluate
\frac{511}{40}=12.775
Factor
\frac{7 \cdot 73}{2 ^ {3} \cdot 5} = 12\frac{31}{40} = 12.775
Quiz
Arithmetic
5 problems similar to:
1 \frac { 1 } { 8 } + 5 \frac { 3 } { 20 } + 6 \frac { 5 } { 10 }
Share
Copied to clipboard
\frac{8+1}{8}+\frac{5\times 20+3}{20}+\frac{6\times 10+5}{10}
Multiply 1 and 8 to get 8.
\frac{9}{8}+\frac{5\times 20+3}{20}+\frac{6\times 10+5}{10}
Add 8 and 1 to get 9.
\frac{9}{8}+\frac{100+3}{20}+\frac{6\times 10+5}{10}
Multiply 5 and 20 to get 100.
\frac{9}{8}+\frac{103}{20}+\frac{6\times 10+5}{10}
Add 100 and 3 to get 103.
\frac{45}{40}+\frac{206}{40}+\frac{6\times 10+5}{10}
Least common multiple of 8 and 20 is 40. Convert \frac{9}{8} and \frac{103}{20} to fractions with denominator 40.
\frac{45+206}{40}+\frac{6\times 10+5}{10}
Since \frac{45}{40} and \frac{206}{40} have the same denominator, add them by adding their numerators.
\frac{251}{40}+\frac{6\times 10+5}{10}
Add 45 and 206 to get 251.
\frac{251}{40}+\frac{60+5}{10}
Multiply 6 and 10 to get 60.
\frac{251}{40}+\frac{65}{10}
Add 60 and 5 to get 65.
\frac{251}{40}+\frac{13}{2}
Reduce the fraction \frac{65}{10} to lowest terms by extracting and canceling out 5.
\frac{251}{40}+\frac{260}{40}
Least common multiple of 40 and 2 is 40. Convert \frac{251}{40} and \frac{13}{2} to fractions with denominator 40.
\frac{251+260}{40}
Since \frac{251}{40} and \frac{260}{40} have the same denominator, add them by adding their numerators.
\frac{511}{40}
Add 251 and 260 to get 511.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}