1 \frac { 1 } { 6 } : 1,4 - ( - 2 ) ^ { 3 } =
Evaluate
\frac{53}{6}\approx 8,833333333
Factor
\frac{53}{2 \cdot 3} = 8\frac{5}{6} = 8.833333333333334
Share
Copied to clipboard
\frac{1\times 6+1}{6\times 1,4}-\left(-2\right)^{3}
Express \frac{\frac{1\times 6+1}{6}}{1,4} as a single fraction.
\frac{6+1}{6\times 1,4}-\left(-2\right)^{3}
Multiply 1 and 6 to get 6.
\frac{7}{6\times 1,4}-\left(-2\right)^{3}
Add 6 and 1 to get 7.
\frac{7}{8,4}-\left(-2\right)^{3}
Multiply 6 and 1,4 to get 8,4.
\frac{70}{84}-\left(-2\right)^{3}
Expand \frac{7}{8,4} by multiplying both numerator and the denominator by 10.
\frac{5}{6}-\left(-2\right)^{3}
Reduce the fraction \frac{70}{84} to lowest terms by extracting and canceling out 14.
\frac{5}{6}-\left(-8\right)
Calculate -2 to the power of 3 and get -8.
\frac{5}{6}+8
The opposite of -8 is 8.
\frac{5}{6}+\frac{48}{6}
Convert 8 to fraction \frac{48}{6}.
\frac{5+48}{6}
Since \frac{5}{6} and \frac{48}{6} have the same denominator, add them by adding their numerators.
\frac{53}{6}
Add 5 and 48 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}