Evaluate
\frac{59}{36}\approx 1.638888889
Factor
\frac{59}{2 ^ {2} \cdot 3 ^ {2}} = 1\frac{23}{36} = 1.6388888888888888
Share
Copied to clipboard
\frac{4+1}{4}+\frac{\frac{1\times 9+5}{9}\times \frac{1\times 8+5}{8}}{\frac{6\times 2+1}{2}}
Multiply 1 and 4 to get 4.
\frac{5}{4}+\frac{\frac{1\times 9+5}{9}\times \frac{1\times 8+5}{8}}{\frac{6\times 2+1}{2}}
Add 4 and 1 to get 5.
\frac{5}{4}+\frac{\frac{9+5}{9}\times \frac{1\times 8+5}{8}}{\frac{6\times 2+1}{2}}
Multiply 1 and 9 to get 9.
\frac{5}{4}+\frac{\frac{14}{9}\times \frac{1\times 8+5}{8}}{\frac{6\times 2+1}{2}}
Add 9 and 5 to get 14.
\frac{5}{4}+\frac{\frac{14}{9}\times \frac{8+5}{8}}{\frac{6\times 2+1}{2}}
Multiply 1 and 8 to get 8.
\frac{5}{4}+\frac{\frac{14}{9}\times \frac{13}{8}}{\frac{6\times 2+1}{2}}
Add 8 and 5 to get 13.
\frac{5}{4}+\frac{\frac{14\times 13}{9\times 8}}{\frac{6\times 2+1}{2}}
Multiply \frac{14}{9} times \frac{13}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}+\frac{\frac{182}{72}}{\frac{6\times 2+1}{2}}
Do the multiplications in the fraction \frac{14\times 13}{9\times 8}.
\frac{5}{4}+\frac{\frac{91}{36}}{\frac{6\times 2+1}{2}}
Reduce the fraction \frac{182}{72} to lowest terms by extracting and canceling out 2.
\frac{5}{4}+\frac{\frac{91}{36}}{\frac{12+1}{2}}
Multiply 6 and 2 to get 12.
\frac{5}{4}+\frac{\frac{91}{36}}{\frac{13}{2}}
Add 12 and 1 to get 13.
\frac{5}{4}+\frac{91}{36}\times \frac{2}{13}
Divide \frac{91}{36} by \frac{13}{2} by multiplying \frac{91}{36} by the reciprocal of \frac{13}{2}.
\frac{5}{4}+\frac{91\times 2}{36\times 13}
Multiply \frac{91}{36} times \frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}+\frac{182}{468}
Do the multiplications in the fraction \frac{91\times 2}{36\times 13}.
\frac{5}{4}+\frac{7}{18}
Reduce the fraction \frac{182}{468} to lowest terms by extracting and canceling out 26.
\frac{45}{36}+\frac{14}{36}
Least common multiple of 4 and 18 is 36. Convert \frac{5}{4} and \frac{7}{18} to fractions with denominator 36.
\frac{45+14}{36}
Since \frac{45}{36} and \frac{14}{36} have the same denominator, add them by adding their numerators.
\frac{59}{36}
Add 45 and 14 to get 59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}