Evaluate
\frac{11}{2}=5.5
Factor
\frac{11}{2} = 5\frac{1}{2} = 5.5
Share
Copied to clipboard
\frac{4+1}{4}+\frac{2\times 3+2}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Multiply 1 and 4 to get 4.
\frac{5}{4}+\frac{2\times 3+2}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Add 4 and 1 to get 5.
\frac{5}{4}+\frac{6+2}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Multiply 2 and 3 to get 6.
\frac{5}{4}+\frac{8}{3}\times \frac{1\times 4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Add 6 and 2 to get 8.
\frac{5}{4}+\frac{8}{3}\times \frac{4+3}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Multiply 1 and 4 to get 4.
\frac{5}{4}+\frac{8}{3}\times \frac{7}{4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Add 4 and 3 to get 7.
\frac{5}{4}+\frac{8\times 7}{3\times 4}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Multiply \frac{8}{3} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}+\frac{56}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Do the multiplications in the fraction \frac{8\times 7}{3\times 4}.
\frac{5}{4}+\frac{14}{3}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Reduce the fraction \frac{56}{12} to lowest terms by extracting and canceling out 4.
\frac{15}{12}+\frac{56}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{14}{3} to fractions with denominator 12.
\frac{15+56}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Since \frac{15}{12} and \frac{56}{12} have the same denominator, add them by adding their numerators.
\frac{71}{12}-\frac{\frac{3\times 6+1}{6}}{\frac{7\times 5+3}{5}}
Add 15 and 56 to get 71.
\frac{71}{12}-\frac{\left(3\times 6+1\right)\times 5}{6\left(7\times 5+3\right)}
Divide \frac{3\times 6+1}{6} by \frac{7\times 5+3}{5} by multiplying \frac{3\times 6+1}{6} by the reciprocal of \frac{7\times 5+3}{5}.
\frac{71}{12}-\frac{\left(18+1\right)\times 5}{6\left(7\times 5+3\right)}
Multiply 3 and 6 to get 18.
\frac{71}{12}-\frac{19\times 5}{6\left(7\times 5+3\right)}
Add 18 and 1 to get 19.
\frac{71}{12}-\frac{95}{6\left(7\times 5+3\right)}
Multiply 19 and 5 to get 95.
\frac{71}{12}-\frac{95}{6\left(35+3\right)}
Multiply 7 and 5 to get 35.
\frac{71}{12}-\frac{95}{6\times 38}
Add 35 and 3 to get 38.
\frac{71}{12}-\frac{95}{228}
Multiply 6 and 38 to get 228.
\frac{71}{12}-\frac{5}{12}
Reduce the fraction \frac{95}{228} to lowest terms by extracting and canceling out 19.
\frac{71-5}{12}
Since \frac{71}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{66}{12}
Subtract 5 from 71 to get 66.
\frac{11}{2}
Reduce the fraction \frac{66}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}