Evaluate
\frac{5}{14}\approx 0.357142857
Factor
\frac{5}{2 \cdot 7} = 0.35714285714285715
Share
Copied to clipboard
\frac{4+1}{4}+\frac{\frac{1}{3}}{\frac{1\times 4+3}{4}}-\frac{1\times 12+1}{12}
Multiply 1 and 4 to get 4.
\frac{5}{4}+\frac{\frac{1}{3}}{\frac{1\times 4+3}{4}}-\frac{1\times 12+1}{12}
Add 4 and 1 to get 5.
\frac{5}{4}+\frac{4}{3\left(1\times 4+3\right)}-\frac{1\times 12+1}{12}
Divide \frac{1}{3} by \frac{1\times 4+3}{4} by multiplying \frac{1}{3} by the reciprocal of \frac{1\times 4+3}{4}.
\frac{5}{4}+\frac{4}{3\left(4+3\right)}-\frac{1\times 12+1}{12}
Multiply 1 and 4 to get 4.
\frac{5}{4}+\frac{4}{3\times 7}-\frac{1\times 12+1}{12}
Add 4 and 3 to get 7.
\frac{5}{4}+\frac{4}{21}-\frac{1\times 12+1}{12}
Multiply 3 and 7 to get 21.
\frac{105}{84}+\frac{16}{84}-\frac{1\times 12+1}{12}
Least common multiple of 4 and 21 is 84. Convert \frac{5}{4} and \frac{4}{21} to fractions with denominator 84.
\frac{105+16}{84}-\frac{1\times 12+1}{12}
Since \frac{105}{84} and \frac{16}{84} have the same denominator, add them by adding their numerators.
\frac{121}{84}-\frac{1\times 12+1}{12}
Add 105 and 16 to get 121.
\frac{121}{84}-\frac{12+1}{12}
Multiply 1 and 12 to get 12.
\frac{121}{84}-\frac{13}{12}
Add 12 and 1 to get 13.
\frac{121}{84}-\frac{91}{84}
Least common multiple of 84 and 12 is 84. Convert \frac{121}{84} and \frac{13}{12} to fractions with denominator 84.
\frac{121-91}{84}
Since \frac{121}{84} and \frac{91}{84} have the same denominator, subtract them by subtracting their numerators.
\frac{30}{84}
Subtract 91 from 121 to get 30.
\frac{5}{14}
Reduce the fraction \frac{30}{84} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}