Evaluate
\frac{7}{486}\approx 0.014403292
Factor
\frac{7}{2 \cdot 3 ^ {5}} = 0.01440329218106996
Share
Copied to clipboard
\frac{3+1}{3}\times \frac{1}{6}\times \frac{7}{9}\times \frac{1}{12}
Multiply 1 and 3 to get 3.
\frac{4}{3}\times \frac{1}{6}\times \frac{7}{9}\times \frac{1}{12}
Add 3 and 1 to get 4.
\frac{4\times 1}{3\times 6}\times \frac{7}{9}\times \frac{1}{12}
Multiply \frac{4}{3} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{18}\times \frac{7}{9}\times \frac{1}{12}
Do the multiplications in the fraction \frac{4\times 1}{3\times 6}.
\frac{2}{9}\times \frac{7}{9}\times \frac{1}{12}
Reduce the fraction \frac{4}{18} to lowest terms by extracting and canceling out 2.
\frac{2\times 7}{9\times 9}\times \frac{1}{12}
Multiply \frac{2}{9} times \frac{7}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{81}\times \frac{1}{12}
Do the multiplications in the fraction \frac{2\times 7}{9\times 9}.
\frac{14\times 1}{81\times 12}
Multiply \frac{14}{81} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{14}{972}
Do the multiplications in the fraction \frac{14\times 1}{81\times 12}.
\frac{7}{486}
Reduce the fraction \frac{14}{972} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}