Solve for s
s=12
Share
Copied to clipboard
15\left(1\times 2+1\right)s=18\left(-5\right)^{2}+10\times 3^{2}
Multiply both sides of the equation by 30, the least common multiple of 2,5,3.
15\left(2+1\right)s=18\left(-5\right)^{2}+10\times 3^{2}
Multiply 1 and 2 to get 2.
15\times 3s=18\left(-5\right)^{2}+10\times 3^{2}
Add 2 and 1 to get 3.
45s=18\left(-5\right)^{2}+10\times 3^{2}
Multiply 15 and 3 to get 45.
45s=18\times 25+10\times 3^{2}
Calculate -5 to the power of 2 and get 25.
45s=450+10\times 3^{2}
Multiply 18 and 25 to get 450.
45s=450+10\times 9
Calculate 3 to the power of 2 and get 9.
45s=450+90
Multiply 10 and 9 to get 90.
45s=540
Add 450 and 90 to get 540.
s=\frac{540}{45}
Divide both sides by 45.
s=12
Divide 540 by 45 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}