Solve for k
\left\{\begin{matrix}\\k=374\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&k=374\end{matrix}\right.
Share
Copied to clipboard
\frac{2+1}{2}km-560m=m
Multiply 1 and 2 to get 2.
\frac{3}{2}km-560m=m
Add 2 and 1 to get 3.
\frac{3}{2}km=m+560m
Add 560m to both sides.
\frac{3}{2}km=561m
Combine m and 560m to get 561m.
\frac{3m}{2}k=561m
The equation is in standard form.
\frac{2\times \frac{3m}{2}k}{3m}=\frac{2\times 561m}{3m}
Divide both sides by \frac{3}{2}m.
k=\frac{2\times 561m}{3m}
Dividing by \frac{3}{2}m undoes the multiplication by \frac{3}{2}m.
k=374
Divide 561m by \frac{3}{2}m.
\frac{2+1}{2}km-560m=m
Multiply 1 and 2 to get 2.
\frac{3}{2}km-560m=m
Add 2 and 1 to get 3.
\frac{3}{2}km-560m-m=0
Subtract m from both sides.
\frac{3}{2}km-561m=0
Combine -560m and -m to get -561m.
\left(\frac{3}{2}k-561\right)m=0
Combine all terms containing m.
\left(\frac{3k}{2}-561\right)m=0
The equation is in standard form.
m=0
Divide 0 by \frac{3}{2}k-561.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}