Evaluate
-\frac{14}{3}\approx -4.666666667
Factor
-\frac{14}{3} = -4\frac{2}{3} = -4.666666666666667
Share
Copied to clipboard
\frac{2+1}{2}-\left(\frac{3\times 2+1}{2}-\frac{5\times 2+2}{2}\right)-\frac{3\times 3+2}{3}-5
Multiply 1 and 2 to get 2.
\frac{3}{2}-\left(\frac{3\times 2+1}{2}-\frac{5\times 2+2}{2}\right)-\frac{3\times 3+2}{3}-5
Add 2 and 1 to get 3.
\frac{3}{2}-\left(\frac{6+1}{2}-\frac{5\times 2+2}{2}\right)-\frac{3\times 3+2}{3}-5
Multiply 3 and 2 to get 6.
\frac{3}{2}-\left(\frac{7}{2}-\frac{5\times 2+2}{2}\right)-\frac{3\times 3+2}{3}-5
Add 6 and 1 to get 7.
\frac{3}{2}-\left(\frac{7}{2}-\frac{10+2}{2}\right)-\frac{3\times 3+2}{3}-5
Multiply 5 and 2 to get 10.
\frac{3}{2}-\left(\frac{7}{2}-\frac{12}{2}\right)-\frac{3\times 3+2}{3}-5
Add 10 and 2 to get 12.
\frac{3}{2}-\frac{7-12}{2}-\frac{3\times 3+2}{3}-5
Since \frac{7}{2} and \frac{12}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}-\left(-\frac{5}{2}\right)-\frac{3\times 3+2}{3}-5
Subtract 12 from 7 to get -5.
\frac{3}{2}+\frac{5}{2}-\frac{3\times 3+2}{3}-5
The opposite of -\frac{5}{2} is \frac{5}{2}.
\frac{3+5}{2}-\frac{3\times 3+2}{3}-5
Since \frac{3}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{8}{2}-\frac{3\times 3+2}{3}-5
Add 3 and 5 to get 8.
4-\frac{3\times 3+2}{3}-5
Divide 8 by 2 to get 4.
4-\frac{9+2}{3}-5
Multiply 3 and 3 to get 9.
4-\frac{11}{3}-5
Add 9 and 2 to get 11.
\frac{12}{3}-\frac{11}{3}-5
Convert 4 to fraction \frac{12}{3}.
\frac{12-11}{3}-5
Since \frac{12}{3} and \frac{11}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}-5
Subtract 11 from 12 to get 1.
\frac{1}{3}-\frac{15}{3}
Convert 5 to fraction \frac{15}{3}.
\frac{1-15}{3}
Since \frac{1}{3} and \frac{15}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{14}{3}
Subtract 15 from 1 to get -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}