Evaluate
\frac{2}{15}\approx 0.133333333
Factor
\frac{2}{3 \cdot 5} = 0.13333333333333333
Share
Copied to clipboard
\frac{\frac{2+1}{2}\times 0.16}{\frac{1\times 5+4}{5}}
Multiply 1 and 2 to get 2.
\frac{\frac{3}{2}\times 0.16}{\frac{1\times 5+4}{5}}
Add 2 and 1 to get 3.
\frac{\frac{3}{2}\times \frac{4}{25}}{\frac{1\times 5+4}{5}}
Convert decimal number 0.16 to fraction \frac{16}{100}. Reduce the fraction \frac{16}{100} to lowest terms by extracting and canceling out 4.
\frac{\frac{3\times 4}{2\times 25}}{\frac{1\times 5+4}{5}}
Multiply \frac{3}{2} times \frac{4}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{12}{50}}{\frac{1\times 5+4}{5}}
Do the multiplications in the fraction \frac{3\times 4}{2\times 25}.
\frac{\frac{6}{25}}{\frac{1\times 5+4}{5}}
Reduce the fraction \frac{12}{50} to lowest terms by extracting and canceling out 2.
\frac{\frac{6}{25}}{\frac{5+4}{5}}
Multiply 1 and 5 to get 5.
\frac{\frac{6}{25}}{\frac{9}{5}}
Add 5 and 4 to get 9.
\frac{6}{25}\times \frac{5}{9}
Divide \frac{6}{25} by \frac{9}{5} by multiplying \frac{6}{25} by the reciprocal of \frac{9}{5}.
\frac{6\times 5}{25\times 9}
Multiply \frac{6}{25} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{30}{225}
Do the multiplications in the fraction \frac{6\times 5}{25\times 9}.
\frac{2}{15}
Reduce the fraction \frac{30}{225} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}