Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2+1}{2}}{\frac{5\times 5+2}{5}-\left(\frac{2\times 5+3}{5}+\frac{\frac{2\times 12+1}{12}}{\frac{1}{2}}+\frac{1}{3}\right)}
Multiply 1 and 2 to get 2.
\frac{\frac{3}{2}}{\frac{5\times 5+2}{5}-\left(\frac{2\times 5+3}{5}+\frac{\frac{2\times 12+1}{12}}{\frac{1}{2}}+\frac{1}{3}\right)}
Add 2 and 1 to get 3.
\frac{\frac{3}{2}}{\frac{25+2}{5}-\left(\frac{2\times 5+3}{5}+\frac{\frac{2\times 12+1}{12}}{\frac{1}{2}}+\frac{1}{3}\right)}
Multiply 5 and 5 to get 25.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{2\times 5+3}{5}+\frac{\frac{2\times 12+1}{12}}{\frac{1}{2}}+\frac{1}{3}\right)}
Add 25 and 2 to get 27.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{10+3}{5}+\frac{\frac{2\times 12+1}{12}}{\frac{1}{2}}+\frac{1}{3}\right)}
Multiply 2 and 5 to get 10.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{13}{5}+\frac{\frac{2\times 12+1}{12}}{\frac{1}{2}}+\frac{1}{3}\right)}
Add 10 and 3 to get 13.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{13}{5}+\frac{\left(2\times 12+1\right)\times 2}{12}+\frac{1}{3}\right)}
Divide \frac{2\times 12+1}{12} by \frac{1}{2} by multiplying \frac{2\times 12+1}{12} by the reciprocal of \frac{1}{2}.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{13}{5}+\frac{\left(24+1\right)\times 2}{12}+\frac{1}{3}\right)}
Multiply 2 and 12 to get 24.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{13}{5}+\frac{25\times 2}{12}+\frac{1}{3}\right)}
Add 24 and 1 to get 25.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{13}{5}+\frac{50}{12}+\frac{1}{3}\right)}
Multiply 25 and 2 to get 50.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{13}{5}+\frac{25}{6}+\frac{1}{3}\right)}
Reduce the fraction \frac{50}{12} to lowest terms by extracting and canceling out 2.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{78}{30}+\frac{125}{30}+\frac{1}{3}\right)}
Least common multiple of 5 and 6 is 30. Convert \frac{13}{5} and \frac{25}{6} to fractions with denominator 30.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{78+125}{30}+\frac{1}{3}\right)}
Since \frac{78}{30} and \frac{125}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{203}{30}+\frac{1}{3}\right)}
Add 78 and 125 to get 203.
\frac{\frac{3}{2}}{\frac{27}{5}-\left(\frac{203}{30}+\frac{10}{30}\right)}
Least common multiple of 30 and 3 is 30. Convert \frac{203}{30} and \frac{1}{3} to fractions with denominator 30.
\frac{\frac{3}{2}}{\frac{27}{5}-\frac{203+10}{30}}
Since \frac{203}{30} and \frac{10}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{2}}{\frac{27}{5}-\frac{213}{30}}
Add 203 and 10 to get 213.
\frac{\frac{3}{2}}{\frac{27}{5}-\frac{71}{10}}
Reduce the fraction \frac{213}{30} to lowest terms by extracting and canceling out 3.
\frac{\frac{3}{2}}{\frac{54}{10}-\frac{71}{10}}
Least common multiple of 5 and 10 is 10. Convert \frac{27}{5} and \frac{71}{10} to fractions with denominator 10.
\frac{\frac{3}{2}}{\frac{54-71}{10}}
Since \frac{54}{10} and \frac{71}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{2}}{-\frac{17}{10}}
Subtract 71 from 54 to get -17.
\frac{3}{2}\left(-\frac{10}{17}\right)
Divide \frac{3}{2} by -\frac{17}{10} by multiplying \frac{3}{2} by the reciprocal of -\frac{17}{10}.
\frac{3\left(-10\right)}{2\times 17}
Multiply \frac{3}{2} times -\frac{10}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{-30}{34}
Do the multiplications in the fraction \frac{3\left(-10\right)}{2\times 17}.
-\frac{15}{17}
Reduce the fraction \frac{-30}{34} to lowest terms by extracting and canceling out 2.