Evaluate
\frac{7}{3}\approx 2.333333333
Factor
\frac{7}{3} = 2\frac{1}{3} = 2.3333333333333335
Share
Copied to clipboard
\frac{13+1}{13}\times \frac{2}{3}+\frac{\frac{1\times 2+1}{2}}{\frac{13}{14}}
Multiply 1 and 13 to get 13.
\frac{14}{13}\times \frac{2}{3}+\frac{\frac{1\times 2+1}{2}}{\frac{13}{14}}
Add 13 and 1 to get 14.
\frac{14\times 2}{13\times 3}+\frac{\frac{1\times 2+1}{2}}{\frac{13}{14}}
Multiply \frac{14}{13} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{28}{39}+\frac{\frac{1\times 2+1}{2}}{\frac{13}{14}}
Do the multiplications in the fraction \frac{14\times 2}{13\times 3}.
\frac{28}{39}+\frac{\left(1\times 2+1\right)\times 14}{2\times 13}
Divide \frac{1\times 2+1}{2} by \frac{13}{14} by multiplying \frac{1\times 2+1}{2} by the reciprocal of \frac{13}{14}.
\frac{28}{39}+\frac{7\left(1+2\right)}{13}
Cancel out 2 in both numerator and denominator.
\frac{28}{39}+\frac{7\times 3}{13}
Add 1 and 2 to get 3.
\frac{28}{39}+\frac{21}{13}
Multiply 7 and 3 to get 21.
\frac{28}{39}+\frac{63}{39}
Least common multiple of 39 and 13 is 39. Convert \frac{28}{39} and \frac{21}{13} to fractions with denominator 39.
\frac{28+63}{39}
Since \frac{28}{39} and \frac{63}{39} have the same denominator, add them by adding their numerators.
\frac{91}{39}
Add 28 and 63 to get 91.
\frac{7}{3}
Reduce the fraction \frac{91}{39} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}