Evaluate
\frac{188\sqrt{10}}{490625}\approx 0.001211736
Share
Copied to clipboard
\frac{100}{628}\times 5^{-9}\sqrt{6\times 4700^{2}+4\times 4700^{2}}
Expand \frac{1}{6.28} by multiplying both numerator and the denominator by 100.
\frac{25}{157}\times 5^{-9}\sqrt{6\times 4700^{2}+4\times 4700^{2}}
Reduce the fraction \frac{100}{628} to lowest terms by extracting and canceling out 4.
\frac{25}{157}\times \frac{1}{1953125}\sqrt{6\times 4700^{2}+4\times 4700^{2}}
Calculate 5 to the power of -9 and get \frac{1}{1953125}.
\frac{1}{12265625}\sqrt{6\times 4700^{2}+4\times 4700^{2}}
Multiply \frac{25}{157} and \frac{1}{1953125} to get \frac{1}{12265625}.
\frac{1}{12265625}\sqrt{6\times 22090000+4\times 4700^{2}}
Calculate 4700 to the power of 2 and get 22090000.
\frac{1}{12265625}\sqrt{132540000+4\times 4700^{2}}
Multiply 6 and 22090000 to get 132540000.
\frac{1}{12265625}\sqrt{132540000+4\times 22090000}
Calculate 4700 to the power of 2 and get 22090000.
\frac{1}{12265625}\sqrt{132540000+88360000}
Multiply 4 and 22090000 to get 88360000.
\frac{1}{12265625}\sqrt{220900000}
Add 132540000 and 88360000 to get 220900000.
\frac{1}{12265625}\times 4700\sqrt{10}
Factor 220900000=4700^{2}\times 10. Rewrite the square root of the product \sqrt{4700^{2}\times 10} as the product of square roots \sqrt{4700^{2}}\sqrt{10}. Take the square root of 4700^{2}.
\frac{188}{490625}\sqrt{10}
Multiply \frac{1}{12265625} and 4700 to get \frac{188}{490625}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}