Evaluate
\frac{\sqrt{446143}}{3140}\approx 0.212719544
Share
Copied to clipboard
\frac{\frac{1}{2}}{3.14\times 100}\sqrt{\left(\frac{13.36}{0.1}\right)^{2}-1.8^{2}}
Express \frac{\frac{\frac{1}{2}}{3.14}}{100} as a single fraction.
\frac{\frac{1}{2}}{314}\sqrt{\left(\frac{13.36}{0.1}\right)^{2}-1.8^{2}}
Multiply 3.14 and 100 to get 314.
\frac{1}{2\times 314}\sqrt{\left(\frac{13.36}{0.1}\right)^{2}-1.8^{2}}
Express \frac{\frac{1}{2}}{314} as a single fraction.
\frac{1}{628}\sqrt{\left(\frac{13.36}{0.1}\right)^{2}-1.8^{2}}
Multiply 2 and 314 to get 628.
\frac{1}{628}\sqrt{\left(\frac{1336}{10}\right)^{2}-1.8^{2}}
Expand \frac{13.36}{0.1} by multiplying both numerator and the denominator by 100.
\frac{1}{628}\sqrt{\left(\frac{668}{5}\right)^{2}-1.8^{2}}
Reduce the fraction \frac{1336}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{628}\sqrt{\frac{446224}{25}-1.8^{2}}
Calculate \frac{668}{5} to the power of 2 and get \frac{446224}{25}.
\frac{1}{628}\sqrt{\frac{446224}{25}-3.24}
Calculate 1.8 to the power of 2 and get 3.24.
\frac{1}{628}\sqrt{\frac{446143}{25}}
Subtract 3.24 from \frac{446224}{25} to get \frac{446143}{25}.
\frac{1}{628}\times \frac{\sqrt{446143}}{\sqrt{25}}
Rewrite the square root of the division \sqrt{\frac{446143}{25}} as the division of square roots \frac{\sqrt{446143}}{\sqrt{25}}.
\frac{1}{628}\times \frac{\sqrt{446143}}{5}
Calculate the square root of 25 and get 5.
\frac{\sqrt{446143}}{628\times 5}
Multiply \frac{1}{628} times \frac{\sqrt{446143}}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{446143}}{3140}
Multiply 628 and 5 to get 3140.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}