Evaluate
\frac{1126}{15}\approx 75.066666667
Factor
\frac{2 \cdot 563}{3 \cdot 5} = 75\frac{1}{15} = 75.06666666666666
Share
Copied to clipboard
\frac{1}{15}+\frac{225}{15}+15+15+15+15
Convert 15 to fraction \frac{225}{15}.
\frac{1+225}{15}+15+15+15+15
Since \frac{1}{15} and \frac{225}{15} have the same denominator, add them by adding their numerators.
\frac{226}{15}+15+15+15+15
Add 1 and 225 to get 226.
\frac{226}{15}+\frac{225}{15}+15+15+15
Convert 15 to fraction \frac{225}{15}.
\frac{226+225}{15}+15+15+15
Since \frac{226}{15} and \frac{225}{15} have the same denominator, add them by adding their numerators.
\frac{451}{15}+15+15+15
Add 226 and 225 to get 451.
\frac{451}{15}+\frac{225}{15}+15+15
Convert 15 to fraction \frac{225}{15}.
\frac{451+225}{15}+15+15
Since \frac{451}{15} and \frac{225}{15} have the same denominator, add them by adding their numerators.
\frac{676}{15}+15+15
Add 451 and 225 to get 676.
\frac{676}{15}+\frac{225}{15}+15
Convert 15 to fraction \frac{225}{15}.
\frac{676+225}{15}+15
Since \frac{676}{15} and \frac{225}{15} have the same denominator, add them by adding their numerators.
\frac{901}{15}+15
Add 676 and 225 to get 901.
\frac{901}{15}+\frac{225}{15}
Convert 15 to fraction \frac{225}{15}.
\frac{901+225}{15}
Since \frac{901}{15} and \frac{225}{15} have the same denominator, add them by adding their numerators.
\frac{1126}{15}
Add 901 and 225 to get 1126.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}