Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{1}{2048}+\frac{1}{2^{12}}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 11 and get 2048.
\frac{1}{2048}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 12 and get 4096.
\frac{2}{4096}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Least common multiple of 2048 and 4096 is 4096. Convert \frac{1}{2048} and \frac{1}{4096} to fractions with denominator 4096.
\frac{2+1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Since \frac{2}{4096} and \frac{1}{4096} have the same denominator, add them by adding their numerators.
\frac{3}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Add 2 and 1 to get 3.
\frac{3}{4096}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 13 and get 8192.
\frac{6}{8192}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Least common multiple of 4096 and 8192 is 8192. Convert \frac{3}{4096} and \frac{1}{8192} to fractions with denominator 8192.
\frac{6+1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Since \frac{6}{8192} and \frac{1}{8192} have the same denominator, add them by adding their numerators.
\frac{7}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Add 6 and 1 to get 7.
\frac{7}{8192}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 14 and get 16384.
\frac{14}{16384}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Least common multiple of 8192 and 16384 is 16384. Convert \frac{7}{8192} and \frac{1}{16384} to fractions with denominator 16384.
\frac{14+1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Since \frac{14}{16384} and \frac{1}{16384} have the same denominator, add them by adding their numerators.
\frac{15}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Add 14 and 1 to get 15.
\frac{15}{16384}+\frac{1}{32768}+\frac{1}{2^{16}}
Calculate 2 to the power of 15 and get 32768.
\frac{30}{32768}+\frac{1}{32768}+\frac{1}{2^{16}}
Least common multiple of 16384 and 32768 is 32768. Convert \frac{15}{16384} and \frac{1}{32768} to fractions with denominator 32768.
\frac{30+1}{32768}+\frac{1}{2^{16}}
Since \frac{30}{32768} and \frac{1}{32768} have the same denominator, add them by adding their numerators.
\frac{31}{32768}+\frac{1}{2^{16}}
Add 30 and 1 to get 31.
\frac{31}{32768}+\frac{1}{65536}
Calculate 2 to the power of 16 and get 65536.
\frac{62}{65536}+\frac{1}{65536}
Least common multiple of 32768 and 65536 is 65536. Convert \frac{31}{32768} and \frac{1}{65536} to fractions with denominator 65536.
\frac{62+1}{65536}
Since \frac{62}{65536} and \frac{1}{65536} have the same denominator, add them by adding their numerators.
\frac{63}{65536}
Add 62 and 1 to get 63.