Evaluate
\frac{63}{65536}=0.000961304
Factor
\frac{3 ^ {2} \cdot 7}{2 ^ {16}} = 0.0009613037109375
Share
Copied to clipboard
\frac{1}{2048}+\frac{1}{2^{12}}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 11 and get 2048.
\frac{1}{2048}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 12 and get 4096.
\frac{2}{4096}+\frac{1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Least common multiple of 2048 and 4096 is 4096. Convert \frac{1}{2048} and \frac{1}{4096} to fractions with denominator 4096.
\frac{2+1}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Since \frac{2}{4096} and \frac{1}{4096} have the same denominator, add them by adding their numerators.
\frac{3}{4096}+\frac{1}{2^{13}}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Add 2 and 1 to get 3.
\frac{3}{4096}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 13 and get 8192.
\frac{6}{8192}+\frac{1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Least common multiple of 4096 and 8192 is 8192. Convert \frac{3}{4096} and \frac{1}{8192} to fractions with denominator 8192.
\frac{6+1}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Since \frac{6}{8192} and \frac{1}{8192} have the same denominator, add them by adding their numerators.
\frac{7}{8192}+\frac{1}{2^{14}}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Add 6 and 1 to get 7.
\frac{7}{8192}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Calculate 2 to the power of 14 and get 16384.
\frac{14}{16384}+\frac{1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Least common multiple of 8192 and 16384 is 16384. Convert \frac{7}{8192} and \frac{1}{16384} to fractions with denominator 16384.
\frac{14+1}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Since \frac{14}{16384} and \frac{1}{16384} have the same denominator, add them by adding their numerators.
\frac{15}{16384}+\frac{1}{2^{15}}+\frac{1}{2^{16}}
Add 14 and 1 to get 15.
\frac{15}{16384}+\frac{1}{32768}+\frac{1}{2^{16}}
Calculate 2 to the power of 15 and get 32768.
\frac{30}{32768}+\frac{1}{32768}+\frac{1}{2^{16}}
Least common multiple of 16384 and 32768 is 32768. Convert \frac{15}{16384} and \frac{1}{32768} to fractions with denominator 32768.
\frac{30+1}{32768}+\frac{1}{2^{16}}
Since \frac{30}{32768} and \frac{1}{32768} have the same denominator, add them by adding their numerators.
\frac{31}{32768}+\frac{1}{2^{16}}
Add 30 and 1 to get 31.
\frac{31}{32768}+\frac{1}{65536}
Calculate 2 to the power of 16 and get 65536.
\frac{62}{65536}+\frac{1}{65536}
Least common multiple of 32768 and 65536 is 65536. Convert \frac{31}{32768} and \frac{1}{65536} to fractions with denominator 65536.
\frac{62+1}{65536}
Since \frac{62}{65536} and \frac{1}{65536} have the same denominator, add them by adding their numerators.
\frac{63}{65536}
Add 62 and 1 to get 63.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}