Evaluate
\frac{300\sqrt{599}}{599}\approx 12.257667697
Share
Copied to clipboard
\frac{1}{\sqrt{1-\frac{89401}{300^{2}}}}
Calculate 299 to the power of 2 and get 89401.
\frac{1}{\sqrt{1-\frac{89401}{90000}}}
Calculate 300 to the power of 2 and get 90000.
\frac{1}{\sqrt{\frac{90000}{90000}-\frac{89401}{90000}}}
Convert 1 to fraction \frac{90000}{90000}.
\frac{1}{\sqrt{\frac{90000-89401}{90000}}}
Since \frac{90000}{90000} and \frac{89401}{90000} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{\sqrt{\frac{599}{90000}}}
Subtract 89401 from 90000 to get 599.
\frac{1}{\frac{\sqrt{599}}{\sqrt{90000}}}
Rewrite the square root of the division \sqrt{\frac{599}{90000}} as the division of square roots \frac{\sqrt{599}}{\sqrt{90000}}.
\frac{1}{\frac{\sqrt{599}}{300}}
Calculate the square root of 90000 and get 300.
\frac{300}{\sqrt{599}}
Divide 1 by \frac{\sqrt{599}}{300} by multiplying 1 by the reciprocal of \frac{\sqrt{599}}{300}.
\frac{300\sqrt{599}}{\left(\sqrt{599}\right)^{2}}
Rationalize the denominator of \frac{300}{\sqrt{599}} by multiplying numerator and denominator by \sqrt{599}.
\frac{300\sqrt{599}}{599}
The square of \sqrt{599} is 599.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}