Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{1}{\lceil 4-\frac{1}{\lfloor 2-\frac{1}{\frac{13}{13}+\frac{5}{13}}\rfloor }\rceil }
Convert 1 to fraction \frac{13}{13}.
\frac{1}{\lceil 4-\frac{1}{\lfloor 2-\frac{1}{\frac{13+5}{13}}\rfloor }\rceil }
Since \frac{13}{13} and \frac{5}{13} have the same denominator, add them by adding their numerators.
\frac{1}{\lceil 4-\frac{1}{\lfloor 2-\frac{1}{\frac{18}{13}}\rfloor }\rceil }
Add 13 and 5 to get 18.
\frac{1}{\lceil 4-\frac{1}{\lfloor 2-1\times \frac{13}{18}\rfloor }\rceil }
Divide 1 by \frac{18}{13} by multiplying 1 by the reciprocal of \frac{18}{13}.
\frac{1}{\lceil 4-\frac{1}{\lfloor 2-\frac{13}{18}\rfloor }\rceil }
Multiply 1 and \frac{13}{18} to get \frac{13}{18}.
\frac{1}{\lceil 4-\frac{1}{\lfloor \frac{36}{18}-\frac{13}{18}\rfloor }\rceil }
Convert 2 to fraction \frac{36}{18}.
\frac{1}{\lceil 4-\frac{1}{\lfloor \frac{36-13}{18}\rfloor }\rceil }
Since \frac{36}{18} and \frac{13}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{\lceil 4-\frac{1}{\lfloor \frac{23}{18}\rfloor }\rceil }
Subtract 13 from 36 to get 23.
\frac{1}{\lceil 4-\frac{1}{\lfloor 1+\frac{5}{18}\rfloor }\rceil }
Dividing 23 by 18 gives 1 and remainder 5. Rewrite \frac{23}{18} as 1+\frac{5}{18}.
\frac{1}{\lceil 4-\frac{1}{1}\rceil }
The floor of a real number a is the largest integer number less than or equal to a. The floor of 1+\frac{5}{18} is 1.
\frac{1}{\lceil 4-1\rceil }
Anything divided by one gives itself.
\frac{1}{\lceil 3\rceil }
Subtract 1 from 4 to get 3.
\frac{1}{3}
The ceiling of a real number a is the smallest integer number greater than or equal to a. The ceiling of 3 is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}