Factor
\left(a+1\right)\left(a+10\right)
Evaluate
\left(a+1\right)\left(a+10\right)
Share
Copied to clipboard
p+q=11 pq=1\times 10=10
Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa+10. To find p and q, set up a system to be solved.
1,10 2,5
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 10.
1+10=11 2+5=7
Calculate the sum for each pair.
p=1 q=10
The solution is the pair that gives sum 11.
\left(a^{2}+a\right)+\left(10a+10\right)
Rewrite a^{2}+11a+10 as \left(a^{2}+a\right)+\left(10a+10\right).
a\left(a+1\right)+10\left(a+1\right)
Factor out a in the first and 10 in the second group.
\left(a+1\right)\left(a+10\right)
Factor out common term a+1 by using distributive property.
a^{2}+11a+10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-11±\sqrt{11^{2}-4\times 10}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-11±\sqrt{121-4\times 10}}{2}
Square 11.
a=\frac{-11±\sqrt{121-40}}{2}
Multiply -4 times 10.
a=\frac{-11±\sqrt{81}}{2}
Add 121 to -40.
a=\frac{-11±9}{2}
Take the square root of 81.
a=-\frac{2}{2}
Now solve the equation a=\frac{-11±9}{2} when ± is plus. Add -11 to 9.
a=-1
Divide -2 by 2.
a=-\frac{20}{2}
Now solve the equation a=\frac{-11±9}{2} when ± is minus. Subtract 9 from -11.
a=-10
Divide -20 by 2.
a^{2}+11a+10=\left(a-\left(-1\right)\right)\left(a-\left(-10\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -10 for x_{2}.
a^{2}+11a+10=\left(a+1\right)\left(a+10\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}