Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\times 10^{-10}=x\left(x+0.22\right)
Multiply 1 and 8 to get 8.
8\times \frac{1}{10000000000}=x\left(x+0.22\right)
Calculate 10 to the power of -10 and get \frac{1}{10000000000}.
\frac{1}{1250000000}=x\left(x+0.22\right)
Multiply 8 and \frac{1}{10000000000} to get \frac{1}{1250000000}.
\frac{1}{1250000000}=x^{2}+0.22x
Use the distributive property to multiply x by x+0.22.
x^{2}+0.22x=\frac{1}{1250000000}
Swap sides so that all variable terms are on the left hand side.
x^{2}+0.22x-\frac{1}{1250000000}=0
Subtract \frac{1}{1250000000} from both sides.
x=\frac{-0.22±\sqrt{0.22^{2}-4\left(-\frac{1}{1250000000}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0.22 for b, and -\frac{1}{1250000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.22±\sqrt{0.0484-4\left(-\frac{1}{1250000000}\right)}}{2}
Square 0.22 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.22±\sqrt{0.0484+\frac{1}{312500000}}}{2}
Multiply -4 times -\frac{1}{1250000000}.
x=\frac{-0.22±\sqrt{\frac{15125001}{312500000}}}{2}
Add 0.0484 to \frac{1}{312500000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.22±\frac{\sqrt{30250002}}{25000}}{2}
Take the square root of \frac{15125001}{312500000}.
x=\frac{\frac{\sqrt{30250002}}{25000}-\frac{11}{50}}{2}
Now solve the equation x=\frac{-0.22±\frac{\sqrt{30250002}}{25000}}{2} when ± is plus. Add -0.22 to \frac{\sqrt{30250002}}{25000}.
x=\frac{\sqrt{30250002}}{50000}-\frac{11}{100}
Divide -\frac{11}{50}+\frac{\sqrt{30250002}}{25000} by 2.
x=\frac{-\frac{\sqrt{30250002}}{25000}-\frac{11}{50}}{2}
Now solve the equation x=\frac{-0.22±\frac{\sqrt{30250002}}{25000}}{2} when ± is minus. Subtract \frac{\sqrt{30250002}}{25000} from -0.22.
x=-\frac{\sqrt{30250002}}{50000}-\frac{11}{100}
Divide -\frac{11}{50}-\frac{\sqrt{30250002}}{25000} by 2.
x=\frac{\sqrt{30250002}}{50000}-\frac{11}{100} x=-\frac{\sqrt{30250002}}{50000}-\frac{11}{100}
The equation is now solved.
8\times 10^{-10}=x\left(x+0.22\right)
Multiply 1 and 8 to get 8.
8\times \frac{1}{10000000000}=x\left(x+0.22\right)
Calculate 10 to the power of -10 and get \frac{1}{10000000000}.
\frac{1}{1250000000}=x\left(x+0.22\right)
Multiply 8 and \frac{1}{10000000000} to get \frac{1}{1250000000}.
\frac{1}{1250000000}=x^{2}+0.22x
Use the distributive property to multiply x by x+0.22.
x^{2}+0.22x=\frac{1}{1250000000}
Swap sides so that all variable terms are on the left hand side.
x^{2}+0.22x+0.11^{2}=\frac{1}{1250000000}+0.11^{2}
Divide 0.22, the coefficient of the x term, by 2 to get 0.11. Then add the square of 0.11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.22x+0.0121=\frac{1}{1250000000}+0.0121
Square 0.11 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.22x+0.0121=\frac{15125001}{1250000000}
Add \frac{1}{1250000000} to 0.0121 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.11\right)^{2}=\frac{15125001}{1250000000}
Factor x^{2}+0.22x+0.0121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.11\right)^{2}}=\sqrt{\frac{15125001}{1250000000}}
Take the square root of both sides of the equation.
x+0.11=\frac{\sqrt{30250002}}{50000} x+0.11=-\frac{\sqrt{30250002}}{50000}
Simplify.
x=\frac{\sqrt{30250002}}{50000}-\frac{11}{100} x=-\frac{\sqrt{30250002}}{50000}-\frac{11}{100}
Subtract 0.11 from both sides of the equation.