Solve for t
t=\frac{2\sqrt{15}}{5}+1\approx 2.549193338
t=-\frac{2\sqrt{15}}{5}+1\approx -0.549193338
Share
Copied to clipboard
-5t^{2}+10t+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\times 7}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 10 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\left(-5\right)\times 7}}{2\left(-5\right)}
Square 10.
t=\frac{-10±\sqrt{100+20\times 7}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-10±\sqrt{100+140}}{2\left(-5\right)}
Multiply 20 times 7.
t=\frac{-10±\sqrt{240}}{2\left(-5\right)}
Add 100 to 140.
t=\frac{-10±4\sqrt{15}}{2\left(-5\right)}
Take the square root of 240.
t=\frac{-10±4\sqrt{15}}{-10}
Multiply 2 times -5.
t=\frac{4\sqrt{15}-10}{-10}
Now solve the equation t=\frac{-10±4\sqrt{15}}{-10} when ± is plus. Add -10 to 4\sqrt{15}.
t=-\frac{2\sqrt{15}}{5}+1
Divide -10+4\sqrt{15} by -10.
t=\frac{-4\sqrt{15}-10}{-10}
Now solve the equation t=\frac{-10±4\sqrt{15}}{-10} when ± is minus. Subtract 4\sqrt{15} from -10.
t=\frac{2\sqrt{15}}{5}+1
Divide -10-4\sqrt{15} by -10.
t=-\frac{2\sqrt{15}}{5}+1 t=\frac{2\sqrt{15}}{5}+1
The equation is now solved.
-5t^{2}+10t+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5t^{2}+10t+7-7=-7
Subtract 7 from both sides of the equation.
-5t^{2}+10t=-7
Subtracting 7 from itself leaves 0.
\frac{-5t^{2}+10t}{-5}=-\frac{7}{-5}
Divide both sides by -5.
t^{2}+\frac{10}{-5}t=-\frac{7}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}-2t=-\frac{7}{-5}
Divide 10 by -5.
t^{2}-2t=\frac{7}{5}
Divide -7 by -5.
t^{2}-2t+1=\frac{7}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-2t+1=\frac{12}{5}
Add \frac{7}{5} to 1.
\left(t-1\right)^{2}=\frac{12}{5}
Factor t^{2}-2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{\frac{12}{5}}
Take the square root of both sides of the equation.
t-1=\frac{2\sqrt{15}}{5} t-1=-\frac{2\sqrt{15}}{5}
Simplify.
t=\frac{2\sqrt{15}}{5}+1 t=-\frac{2\sqrt{15}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}