Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1.01\left(42-x\right)\times 0.99x=0.8
Multiply 1 and 1.01 to get 1.01.
0.9999\left(42-x\right)x=0.8
Multiply 1.01 and 0.99 to get 0.9999.
\left(41.9958-0.9999x\right)x=0.8
Use the distributive property to multiply 0.9999 by 42-x.
41.9958x-0.9999x^{2}=0.8
Use the distributive property to multiply 41.9958-0.9999x by x.
41.9958x-0.9999x^{2}-0.8=0
Subtract 0.8 from both sides.
-0.9999x^{2}+41.9958x-0.8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-41.9958±\sqrt{41.9958^{2}-4\left(-0.9999\right)\left(-0.8\right)}}{2\left(-0.9999\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.9999 for a, 41.9958 for b, and -0.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-41.9958±\sqrt{1763.64721764-4\left(-0.9999\right)\left(-0.8\right)}}{2\left(-0.9999\right)}
Square 41.9958 by squaring both the numerator and the denominator of the fraction.
x=\frac{-41.9958±\sqrt{1763.64721764+3.9996\left(-0.8\right)}}{2\left(-0.9999\right)}
Multiply -4 times -0.9999.
x=\frac{-41.9958±\sqrt{1763.64721764-3.19968}}{2\left(-0.9999\right)}
Multiply 3.9996 times -0.8 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-41.9958±\sqrt{1760.44753764}}{2\left(-0.9999\right)}
Add 1763.64721764 to -3.19968 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-41.9958±\frac{3\sqrt{4890132049}}{5000}}{2\left(-0.9999\right)}
Take the square root of 1760.44753764.
x=\frac{-41.9958±\frac{3\sqrt{4890132049}}{5000}}{-1.9998}
Multiply 2 times -0.9999.
x=\frac{3\sqrt{4890132049}-209979}{-1.9998\times 5000}
Now solve the equation x=\frac{-41.9958±\frac{3\sqrt{4890132049}}{5000}}{-1.9998} when ± is plus. Add -41.9958 to \frac{3\sqrt{4890132049}}{5000}.
x=-\frac{\sqrt{4890132049}}{3333}+21
Divide \frac{-209979+3\sqrt{4890132049}}{5000} by -1.9998 by multiplying \frac{-209979+3\sqrt{4890132049}}{5000} by the reciprocal of -1.9998.
x=\frac{-3\sqrt{4890132049}-209979}{-1.9998\times 5000}
Now solve the equation x=\frac{-41.9958±\frac{3\sqrt{4890132049}}{5000}}{-1.9998} when ± is minus. Subtract \frac{3\sqrt{4890132049}}{5000} from -41.9958.
x=\frac{\sqrt{4890132049}}{3333}+21
Divide \frac{-209979-3\sqrt{4890132049}}{5000} by -1.9998 by multiplying \frac{-209979-3\sqrt{4890132049}}{5000} by the reciprocal of -1.9998.
x=-\frac{\sqrt{4890132049}}{3333}+21 x=\frac{\sqrt{4890132049}}{3333}+21
The equation is now solved.
1.01\left(42-x\right)\times 0.99x=0.8
Multiply 1 and 1.01 to get 1.01.
0.9999\left(42-x\right)x=0.8
Multiply 1.01 and 0.99 to get 0.9999.
\left(41.9958-0.9999x\right)x=0.8
Use the distributive property to multiply 0.9999 by 42-x.
41.9958x-0.9999x^{2}=0.8
Use the distributive property to multiply 41.9958-0.9999x by x.
-0.9999x^{2}+41.9958x=0.8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.9999x^{2}+41.9958x}{-0.9999}=\frac{0.8}{-0.9999}
Divide both sides of the equation by -0.9999, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{41.9958}{-0.9999}x=\frac{0.8}{-0.9999}
Dividing by -0.9999 undoes the multiplication by -0.9999.
x^{2}-42x=\frac{0.8}{-0.9999}
Divide 41.9958 by -0.9999 by multiplying 41.9958 by the reciprocal of -0.9999.
x^{2}-42x=-\frac{8000}{9999}
Divide 0.8 by -0.9999 by multiplying 0.8 by the reciprocal of -0.9999.
x^{2}-42x+\left(-21\right)^{2}=-\frac{8000}{9999}+\left(-21\right)^{2}
Divide -42, the coefficient of the x term, by 2 to get -21. Then add the square of -21 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-42x+441=-\frac{8000}{9999}+441
Square -21.
x^{2}-42x+441=\frac{4401559}{9999}
Add -\frac{8000}{9999} to 441.
\left(x-21\right)^{2}=\frac{4401559}{9999}
Factor x^{2}-42x+441. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-21\right)^{2}}=\sqrt{\frac{4401559}{9999}}
Take the square root of both sides of the equation.
x-21=\frac{\sqrt{4890132049}}{3333} x-21=-\frac{\sqrt{4890132049}}{3333}
Simplify.
x=\frac{\sqrt{4890132049}}{3333}+21 x=-\frac{\sqrt{4890132049}}{3333}+21
Add 21 to both sides of the equation.