Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

1\times \frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
1\times \frac{1\left(1-i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1\times \frac{1\left(1-i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
1\times \frac{1-i}{2}
Multiply 1 and 1-i to get 1-i.
1\left(\frac{1}{2}-\frac{1}{2}i\right)
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}-\frac{1}{2}i
Multiply 1 and \frac{1}{2}-\frac{1}{2}i to get \frac{1}{2}-\frac{1}{2}i.
Re(1\times \frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Multiply both numerator and denominator of \frac{1}{1+i} by the complex conjugate of the denominator, 1-i.
Re(1\times \frac{1\left(1-i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(1\times \frac{1\left(1-i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(1\times \frac{1-i}{2})
Multiply 1 and 1-i to get 1-i.
Re(1\left(\frac{1}{2}-\frac{1}{2}i\right))
Divide 1-i by 2 to get \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}-\frac{1}{2}i)
Multiply 1 and \frac{1}{2}-\frac{1}{2}i to get \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}-\frac{1}{2}i is \frac{1}{2}.