Solve for λ
\lambda =1
\lambda =\frac{5}{6}\approx 0.833333333
Share
Copied to clipboard
1-6\lambda ^{2}+11\lambda -6=0
Calculate 1 to the power of 3 and get 1.
-5-6\lambda ^{2}+11\lambda =0
Subtract 6 from 1 to get -5.
-6\lambda ^{2}+11\lambda -5=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-6\left(-5\right)=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -6\lambda ^{2}+a\lambda +b\lambda -5. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=6 b=5
The solution is the pair that gives sum 11.
\left(-6\lambda ^{2}+6\lambda \right)+\left(5\lambda -5\right)
Rewrite -6\lambda ^{2}+11\lambda -5 as \left(-6\lambda ^{2}+6\lambda \right)+\left(5\lambda -5\right).
6\lambda \left(-\lambda +1\right)-5\left(-\lambda +1\right)
Factor out 6\lambda in the first and -5 in the second group.
\left(-\lambda +1\right)\left(6\lambda -5\right)
Factor out common term -\lambda +1 by using distributive property.
\lambda =1 \lambda =\frac{5}{6}
To find equation solutions, solve -\lambda +1=0 and 6\lambda -5=0.
1-6\lambda ^{2}+11\lambda -6=0
Calculate 1 to the power of 3 and get 1.
-5-6\lambda ^{2}+11\lambda =0
Subtract 6 from 1 to get -5.
-6\lambda ^{2}+11\lambda -5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-11±\sqrt{11^{2}-4\left(-6\right)\left(-5\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 11 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-11±\sqrt{121-4\left(-6\right)\left(-5\right)}}{2\left(-6\right)}
Square 11.
\lambda =\frac{-11±\sqrt{121+24\left(-5\right)}}{2\left(-6\right)}
Multiply -4 times -6.
\lambda =\frac{-11±\sqrt{121-120}}{2\left(-6\right)}
Multiply 24 times -5.
\lambda =\frac{-11±\sqrt{1}}{2\left(-6\right)}
Add 121 to -120.
\lambda =\frac{-11±1}{2\left(-6\right)}
Take the square root of 1.
\lambda =\frac{-11±1}{-12}
Multiply 2 times -6.
\lambda =-\frac{10}{-12}
Now solve the equation \lambda =\frac{-11±1}{-12} when ± is plus. Add -11 to 1.
\lambda =\frac{5}{6}
Reduce the fraction \frac{-10}{-12} to lowest terms by extracting and canceling out 2.
\lambda =-\frac{12}{-12}
Now solve the equation \lambda =\frac{-11±1}{-12} when ± is minus. Subtract 1 from -11.
\lambda =1
Divide -12 by -12.
\lambda =\frac{5}{6} \lambda =1
The equation is now solved.
1-6\lambda ^{2}+11\lambda -6=0
Calculate 1 to the power of 3 and get 1.
-5-6\lambda ^{2}+11\lambda =0
Subtract 6 from 1 to get -5.
-6\lambda ^{2}+11\lambda =5
Add 5 to both sides. Anything plus zero gives itself.
\frac{-6\lambda ^{2}+11\lambda }{-6}=\frac{5}{-6}
Divide both sides by -6.
\lambda ^{2}+\frac{11}{-6}\lambda =\frac{5}{-6}
Dividing by -6 undoes the multiplication by -6.
\lambda ^{2}-\frac{11}{6}\lambda =\frac{5}{-6}
Divide 11 by -6.
\lambda ^{2}-\frac{11}{6}\lambda =-\frac{5}{6}
Divide 5 by -6.
\lambda ^{2}-\frac{11}{6}\lambda +\left(-\frac{11}{12}\right)^{2}=-\frac{5}{6}+\left(-\frac{11}{12}\right)^{2}
Divide -\frac{11}{6}, the coefficient of the x term, by 2 to get -\frac{11}{12}. Then add the square of -\frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-\frac{11}{6}\lambda +\frac{121}{144}=-\frac{5}{6}+\frac{121}{144}
Square -\frac{11}{12} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-\frac{11}{6}\lambda +\frac{121}{144}=\frac{1}{144}
Add -\frac{5}{6} to \frac{121}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda -\frac{11}{12}\right)^{2}=\frac{1}{144}
Factor \lambda ^{2}-\frac{11}{6}\lambda +\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{11}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Take the square root of both sides of the equation.
\lambda -\frac{11}{12}=\frac{1}{12} \lambda -\frac{11}{12}=-\frac{1}{12}
Simplify.
\lambda =1 \lambda =\frac{5}{6}
Add \frac{11}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}