Solve for λ
\lambda =\frac{-3\sqrt{515}i+47}{58}\approx 0.810344828-1.173807488i
\lambda =\frac{47+3\sqrt{515}i}{58}\approx 0.810344828+1.173807488i
Share
Copied to clipboard
-29\lambda ^{2}+47\lambda -59=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-47±\sqrt{47^{2}-4\left(-29\right)\left(-59\right)}}{2\left(-29\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -29 for a, 47 for b, and -59 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-47±\sqrt{2209-4\left(-29\right)\left(-59\right)}}{2\left(-29\right)}
Square 47.
\lambda =\frac{-47±\sqrt{2209+116\left(-59\right)}}{2\left(-29\right)}
Multiply -4 times -29.
\lambda =\frac{-47±\sqrt{2209-6844}}{2\left(-29\right)}
Multiply 116 times -59.
\lambda =\frac{-47±\sqrt{-4635}}{2\left(-29\right)}
Add 2209 to -6844.
\lambda =\frac{-47±3\sqrt{515}i}{2\left(-29\right)}
Take the square root of -4635.
\lambda =\frac{-47±3\sqrt{515}i}{-58}
Multiply 2 times -29.
\lambda =\frac{-47+3\sqrt{515}i}{-58}
Now solve the equation \lambda =\frac{-47±3\sqrt{515}i}{-58} when ± is plus. Add -47 to 3i\sqrt{515}.
\lambda =\frac{-3\sqrt{515}i+47}{58}
Divide -47+3i\sqrt{515} by -58.
\lambda =\frac{-3\sqrt{515}i-47}{-58}
Now solve the equation \lambda =\frac{-47±3\sqrt{515}i}{-58} when ± is minus. Subtract 3i\sqrt{515} from -47.
\lambda =\frac{47+3\sqrt{515}i}{58}
Divide -47-3i\sqrt{515} by -58.
\lambda =\frac{-3\sqrt{515}i+47}{58} \lambda =\frac{47+3\sqrt{515}i}{58}
The equation is now solved.
-29\lambda ^{2}+47\lambda -59=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-29\lambda ^{2}+47\lambda -59-\left(-59\right)=-\left(-59\right)
Add 59 to both sides of the equation.
-29\lambda ^{2}+47\lambda =-\left(-59\right)
Subtracting -59 from itself leaves 0.
-29\lambda ^{2}+47\lambda =59
Subtract -59 from 0.
\frac{-29\lambda ^{2}+47\lambda }{-29}=\frac{59}{-29}
Divide both sides by -29.
\lambda ^{2}+\frac{47}{-29}\lambda =\frac{59}{-29}
Dividing by -29 undoes the multiplication by -29.
\lambda ^{2}-\frac{47}{29}\lambda =\frac{59}{-29}
Divide 47 by -29.
\lambda ^{2}-\frac{47}{29}\lambda =-\frac{59}{29}
Divide 59 by -29.
\lambda ^{2}-\frac{47}{29}\lambda +\left(-\frac{47}{58}\right)^{2}=-\frac{59}{29}+\left(-\frac{47}{58}\right)^{2}
Divide -\frac{47}{29}, the coefficient of the x term, by 2 to get -\frac{47}{58}. Then add the square of -\frac{47}{58} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-\frac{47}{29}\lambda +\frac{2209}{3364}=-\frac{59}{29}+\frac{2209}{3364}
Square -\frac{47}{58} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-\frac{47}{29}\lambda +\frac{2209}{3364}=-\frac{4635}{3364}
Add -\frac{59}{29} to \frac{2209}{3364} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\lambda -\frac{47}{58}\right)^{2}=-\frac{4635}{3364}
Factor \lambda ^{2}-\frac{47}{29}\lambda +\frac{2209}{3364}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{47}{58}\right)^{2}}=\sqrt{-\frac{4635}{3364}}
Take the square root of both sides of the equation.
\lambda -\frac{47}{58}=\frac{3\sqrt{515}i}{58} \lambda -\frac{47}{58}=-\frac{3\sqrt{515}i}{58}
Simplify.
\lambda =\frac{47+3\sqrt{515}i}{58} \lambda =\frac{-3\sqrt{515}i+47}{58}
Add \frac{47}{58} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}