Evaluate
\frac{1461}{245}\approx 5.963265306
Factor
\frac{3 \cdot 487}{5 \cdot 7 ^ {2}} = 5\frac{236}{245} = 5.963265306122449
Share
Copied to clipboard
1-4\left(-\frac{32}{4900}\right)\times 190
Calculate 1 to the power of 2 and get 1.
1-4\left(-\frac{8}{1225}\right)\times 190
Reduce the fraction \frac{32}{4900} to lowest terms by extracting and canceling out 4.
1-\frac{4\left(-8\right)}{1225}\times 190
Express 4\left(-\frac{8}{1225}\right) as a single fraction.
1-\frac{-32}{1225}\times 190
Multiply 4 and -8 to get -32.
1-\left(-\frac{32}{1225}\times 190\right)
Fraction \frac{-32}{1225} can be rewritten as -\frac{32}{1225} by extracting the negative sign.
1-\frac{-32\times 190}{1225}
Express -\frac{32}{1225}\times 190 as a single fraction.
1-\frac{-6080}{1225}
Multiply -32 and 190 to get -6080.
1-\left(-\frac{1216}{245}\right)
Reduce the fraction \frac{-6080}{1225} to lowest terms by extracting and canceling out 5.
1+\frac{1216}{245}
The opposite of -\frac{1216}{245} is \frac{1216}{245}.
\frac{245}{245}+\frac{1216}{245}
Convert 1 to fraction \frac{245}{245}.
\frac{245+1216}{245}
Since \frac{245}{245} and \frac{1216}{245} have the same denominator, add them by adding their numerators.
\frac{1461}{245}
Add 245 and 1216 to get 1461.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}