Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1\times \frac{1}{1-x+x^{2}}
Calculate 1 to the power of -1 and get 1.
\frac{1}{1-x+x^{2}}
Express 1\times \frac{1}{1-x+x^{2}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(1\times \frac{1}{1-x+x^{2}})
Calculate 1 to the power of -1 and get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{1-x+x^{2}})
Express 1\times \frac{1}{1-x+x^{2}} as a single fraction.
-\left(-x^{1}+x^{2}+1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+x^{2}+1)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(-x^{1}+x^{2}+1\right)^{-2}\left(-x^{1-1}+2x^{2-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-x^{1}+x^{2}+1\right)^{-2}\left(x^{0}-2x^{1}\right)
Simplify.
\left(-x+x^{2}+1\right)^{-2}\left(x^{0}-2x\right)
For any term t, t^{1}=t.
\left(-x+x^{2}+1\right)^{-2}\left(1-2x\right)
For any term t except 0, t^{0}=1.