Solve for a
a=-\frac{1}{6}\approx -0.166666667
Share
Copied to clipboard
1=a\left(2-2+i\right)\left(2-\left(2-i\right)\right)\left(2-3\right)\left(2-\left(-4\right)\right)
Subtract 2+i from 2 by subtracting corresponding real and imaginary parts.
1=a\left(-i\right)\left(2-\left(2-i\right)\right)\left(2-3\right)\left(2-\left(-4\right)\right)
Subtract 2 from 2.
1=a\left(-i\right)\left(2-2-i\right)\left(2-3\right)\left(2-\left(-4\right)\right)
Subtract 2-i from 2 by subtracting corresponding real and imaginary parts.
1=a\left(-i\right)i\left(2-3\right)\left(2-\left(-4\right)\right)
Subtract 2 from 2.
1=a\left(2-3\right)\left(2-\left(-4\right)\right)
Multiply -i and i to get 1.
1=a\left(-1\right)\left(2-\left(-4\right)\right)
Subtract 3 from 2 to get -1.
1=a\left(-1\right)\left(2+4\right)
The opposite of -4 is 4.
1=a\left(-1\right)\times 6
Add 2 and 4 to get 6.
1=a\left(-6\right)
Multiply -1 and 6 to get -6.
a\left(-6\right)=1
Swap sides so that all variable terms are on the left hand side.
a=\frac{1}{-6}
Divide both sides by -6.
a=-\frac{1}{6}
Fraction \frac{1}{-6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}