Solve for x
x=\frac{25000000000D^{2}}{667}
D\neq 0
Solve for D (complex solution)
D=-\frac{\sqrt{6670x}}{500000}
D=\frac{\sqrt{6670x}}{500000}\text{, }x\neq 0
Solve for D
D=\frac{\sqrt{6670x}}{500000}
D=-\frac{\sqrt{6670x}}{500000}\text{, }x>0
Graph
Quiz
Algebra
5 problems similar to:
1 = 667 \frac { x 10 ^ { - 11 } \times 2 \times 2 } { ( D ) ^ { 2 } }
Share
Copied to clipboard
\frac{1}{667}=\frac{x\times 10^{-11}\times 2\times 2}{D^{2}}
Divide both sides by 667.
D^{2}=667x\times 10^{-11}\times 2\times 2
Multiply both sides of the equation by 667D^{2}, the least common multiple of 667,D^{2}.
D^{2}=667x\times \frac{1}{100000000000}\times 2\times 2
Calculate 10 to the power of -11 and get \frac{1}{100000000000}.
D^{2}=\frac{667}{100000000000}x\times 2\times 2
Multiply 667 and \frac{1}{100000000000} to get \frac{667}{100000000000}.
D^{2}=\frac{667}{50000000000}x\times 2
Multiply \frac{667}{100000000000} and 2 to get \frac{667}{50000000000}.
D^{2}=\frac{667}{25000000000}x
Multiply \frac{667}{50000000000} and 2 to get \frac{667}{25000000000}.
\frac{667}{25000000000}x=D^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{\frac{667}{25000000000}x}{\frac{667}{25000000000}}=\frac{D^{2}}{\frac{667}{25000000000}}
Divide both sides of the equation by \frac{667}{25000000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{D^{2}}{\frac{667}{25000000000}}
Dividing by \frac{667}{25000000000} undoes the multiplication by \frac{667}{25000000000}.
x=\frac{25000000000D^{2}}{667}
Divide D^{2} by \frac{667}{25000000000} by multiplying D^{2} by the reciprocal of \frac{667}{25000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}