Solve for λ
\lambda =\frac{3}{2}=1.5
\lambda =-\frac{3}{2}=-1.5
Share
Copied to clipboard
1=4\lambda ^{2}-8\times 1
Subtract 1 from 2 to get 1.
1=4\lambda ^{2}-8
Multiply 8 and 1 to get 8.
4\lambda ^{2}-8=1
Swap sides so that all variable terms are on the left hand side.
4\lambda ^{2}-8-1=0
Subtract 1 from both sides.
4\lambda ^{2}-9=0
Subtract 1 from -8 to get -9.
\left(2\lambda -3\right)\left(2\lambda +3\right)=0
Consider 4\lambda ^{2}-9. Rewrite 4\lambda ^{2}-9 as \left(2\lambda \right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\lambda =\frac{3}{2} \lambda =-\frac{3}{2}
To find equation solutions, solve 2\lambda -3=0 and 2\lambda +3=0.
1=4\lambda ^{2}-8\times 1
Subtract 1 from 2 to get 1.
1=4\lambda ^{2}-8
Multiply 8 and 1 to get 8.
4\lambda ^{2}-8=1
Swap sides so that all variable terms are on the left hand side.
4\lambda ^{2}=1+8
Add 8 to both sides.
4\lambda ^{2}=9
Add 1 and 8 to get 9.
\lambda ^{2}=\frac{9}{4}
Divide both sides by 4.
\lambda =\frac{3}{2} \lambda =-\frac{3}{2}
Take the square root of both sides of the equation.
1=4\lambda ^{2}-8\times 1
Subtract 1 from 2 to get 1.
1=4\lambda ^{2}-8
Multiply 8 and 1 to get 8.
4\lambda ^{2}-8=1
Swap sides so that all variable terms are on the left hand side.
4\lambda ^{2}-8-1=0
Subtract 1 from both sides.
4\lambda ^{2}-9=0
Subtract 1 from -8 to get -9.
\lambda =\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
Square 0.
\lambda =\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
Multiply -4 times 4.
\lambda =\frac{0±\sqrt{144}}{2\times 4}
Multiply -16 times -9.
\lambda =\frac{0±12}{2\times 4}
Take the square root of 144.
\lambda =\frac{0±12}{8}
Multiply 2 times 4.
\lambda =\frac{3}{2}
Now solve the equation \lambda =\frac{0±12}{8} when ± is plus. Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
\lambda =-\frac{3}{2}
Now solve the equation \lambda =\frac{0±12}{8} when ± is minus. Reduce the fraction \frac{-12}{8} to lowest terms by extracting and canceling out 4.
\lambda =\frac{3}{2} \lambda =-\frac{3}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}