Solve for n
n=0
Solve for n (complex solution)
n=\frac{i\times 2\times 1085\pi n_{1}x}{268\ln(2)-268\ln(5)}
n_{1}\in \mathrm{Z}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}\\x\neq 0\text{, }&\text{unconditionally}\\x=-\frac{i\times \frac{268\ln(2)-268\ln(5)}{1085}n}{2\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\neq 0\text{, }&n\neq 0\end{matrix}\right.
Solve for x
x\neq 0
Graph
Share
Copied to clipboard
2.5^{n\times \frac{-2.68}{10.85x}}=1
Swap sides so that all variable terms are on the left hand side.
2.5^{\left(-\frac{2.68}{10.85x}\right)n}=1
Reorder the terms.
2.5^{-\frac{2.68}{10.85x}n}=1
Reorder the terms.
2.5^{\left(-\frac{268}{1085x}\right)n}=1
Use the rules of exponents and logarithms to solve the equation.
\log(2.5^{\left(-\frac{268}{1085x}\right)n})=\log(1)
Take the logarithm of both sides of the equation.
\left(-\frac{268}{1085x}\right)n\log(2.5)=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-\frac{268}{1085x}\right)n=\frac{\log(1)}{\log(2.5)}
Divide both sides by \log(2.5).
\left(-\frac{268}{1085x}\right)n=\log_{2.5}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=\frac{0}{-\frac{268}{1085x}}
Divide both sides by -\frac{268}{1085}x^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}