Solve for x
x=-\frac{2\left(2-3y\right)}{2y-1}
y\neq \frac{1}{2}
Solve for y
y=-\frac{4-x}{2\left(x-3\right)}
x\neq 3
Graph
Share
Copied to clipboard
-x+3=2y\left(-x+3\right)-1
Variable x cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by -x+3.
-x+3=-2xy+6y-1
Use the distributive property to multiply 2y by -x+3.
-x+3+2xy=6y-1
Add 2xy to both sides.
-x+2xy=6y-1-3
Subtract 3 from both sides.
-x+2xy=6y-4
Subtract 3 from -1 to get -4.
\left(-1+2y\right)x=6y-4
Combine all terms containing x.
\left(2y-1\right)x=6y-4
The equation is in standard form.
\frac{\left(2y-1\right)x}{2y-1}=\frac{6y-4}{2y-1}
Divide both sides by -1+2y.
x=\frac{6y-4}{2y-1}
Dividing by -1+2y undoes the multiplication by -1+2y.
x=\frac{2\left(3y-2\right)}{2y-1}
Divide -4+6y by -1+2y.
x=\frac{2\left(3y-2\right)}{2y-1}\text{, }x\neq 3
Variable x cannot be equal to 3.
-x+3=2y\left(-x+3\right)-1
Multiply both sides of the equation by -x+3.
-x+3=-2xy+6y-1
Use the distributive property to multiply 2y by -x+3.
-2xy+6y-1=-x+3
Swap sides so that all variable terms are on the left hand side.
-2xy+6y=-x+3+1
Add 1 to both sides.
-2xy+6y=-x+4
Add 3 and 1 to get 4.
\left(-2x+6\right)y=-x+4
Combine all terms containing y.
\left(6-2x\right)y=4-x
The equation is in standard form.
\frac{\left(6-2x\right)y}{6-2x}=\frac{4-x}{6-2x}
Divide both sides by -2x+6.
y=\frac{4-x}{6-2x}
Dividing by -2x+6 undoes the multiplication by -2x+6.
y=\frac{4-x}{2\left(3-x\right)}
Divide -x+4 by -2x+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}