Solve for x
x = \frac{\sqrt{86} + 16}{17} \approx 1.486683441
x=\frac{16-\sqrt{86}}{17}\approx 0.3956695
Graph
Share
Copied to clipboard
11+17x^{2}-32x=1
Swap sides so that all variable terms are on the left hand side.
11+17x^{2}-32x-1=0
Subtract 1 from both sides.
10+17x^{2}-32x=0
Subtract 1 from 11 to get 10.
17x^{2}-32x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 17\times 10}}{2\times 17}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 17 for a, -32 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 17\times 10}}{2\times 17}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-68\times 10}}{2\times 17}
Multiply -4 times 17.
x=\frac{-\left(-32\right)±\sqrt{1024-680}}{2\times 17}
Multiply -68 times 10.
x=\frac{-\left(-32\right)±\sqrt{344}}{2\times 17}
Add 1024 to -680.
x=\frac{-\left(-32\right)±2\sqrt{86}}{2\times 17}
Take the square root of 344.
x=\frac{32±2\sqrt{86}}{2\times 17}
The opposite of -32 is 32.
x=\frac{32±2\sqrt{86}}{34}
Multiply 2 times 17.
x=\frac{2\sqrt{86}+32}{34}
Now solve the equation x=\frac{32±2\sqrt{86}}{34} when ± is plus. Add 32 to 2\sqrt{86}.
x=\frac{\sqrt{86}+16}{17}
Divide 32+2\sqrt{86} by 34.
x=\frac{32-2\sqrt{86}}{34}
Now solve the equation x=\frac{32±2\sqrt{86}}{34} when ± is minus. Subtract 2\sqrt{86} from 32.
x=\frac{16-\sqrt{86}}{17}
Divide 32-2\sqrt{86} by 34.
x=\frac{\sqrt{86}+16}{17} x=\frac{16-\sqrt{86}}{17}
The equation is now solved.
11+17x^{2}-32x=1
Swap sides so that all variable terms are on the left hand side.
17x^{2}-32x=1-11
Subtract 11 from both sides.
17x^{2}-32x=-10
Subtract 11 from 1 to get -10.
\frac{17x^{2}-32x}{17}=-\frac{10}{17}
Divide both sides by 17.
x^{2}-\frac{32}{17}x=-\frac{10}{17}
Dividing by 17 undoes the multiplication by 17.
x^{2}-\frac{32}{17}x+\left(-\frac{16}{17}\right)^{2}=-\frac{10}{17}+\left(-\frac{16}{17}\right)^{2}
Divide -\frac{32}{17}, the coefficient of the x term, by 2 to get -\frac{16}{17}. Then add the square of -\frac{16}{17} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{32}{17}x+\frac{256}{289}=-\frac{10}{17}+\frac{256}{289}
Square -\frac{16}{17} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{32}{17}x+\frac{256}{289}=\frac{86}{289}
Add -\frac{10}{17} to \frac{256}{289} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{16}{17}\right)^{2}=\frac{86}{289}
Factor x^{2}-\frac{32}{17}x+\frac{256}{289}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{17}\right)^{2}}=\sqrt{\frac{86}{289}}
Take the square root of both sides of the equation.
x-\frac{16}{17}=\frac{\sqrt{86}}{17} x-\frac{16}{17}=-\frac{\sqrt{86}}{17}
Simplify.
x=\frac{\sqrt{86}+16}{17} x=\frac{16-\sqrt{86}}{17}
Add \frac{16}{17} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}