Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

1=m^{2}+2m-3
Use the distributive property to multiply m+2 by m.
m^{2}+2m-3=1
Swap sides so that all variable terms are on the left hand side.
m^{2}+2m-3-1=0
Subtract 1 from both sides.
m^{2}+2m-4=0
Subtract 1 from -3 to get -4.
m=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Square 2.
m=\frac{-2±\sqrt{4+16}}{2}
Multiply -4 times -4.
m=\frac{-2±\sqrt{20}}{2}
Add 4 to 16.
m=\frac{-2±2\sqrt{5}}{2}
Take the square root of 20.
m=\frac{2\sqrt{5}-2}{2}
Now solve the equation m=\frac{-2±2\sqrt{5}}{2} when ± is plus. Add -2 to 2\sqrt{5}.
m=\sqrt{5}-1
Divide -2+2\sqrt{5} by 2.
m=\frac{-2\sqrt{5}-2}{2}
Now solve the equation m=\frac{-2±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -2.
m=-\sqrt{5}-1
Divide -2-2\sqrt{5} by 2.
m=\sqrt{5}-1 m=-\sqrt{5}-1
The equation is now solved.
1=m^{2}+2m-3
Use the distributive property to multiply m+2 by m.
m^{2}+2m-3=1
Swap sides so that all variable terms are on the left hand side.
m^{2}+2m=1+3
Add 3 to both sides.
m^{2}+2m=4
Add 1 and 3 to get 4.
m^{2}+2m+1^{2}=4+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+2m+1=4+1
Square 1.
m^{2}+2m+1=5
Add 4 to 1.
\left(m+1\right)^{2}=5
Factor m^{2}+2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+1\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
m+1=\sqrt{5} m+1=-\sqrt{5}
Simplify.
m=\sqrt{5}-1 m=-\sqrt{5}-1
Subtract 1 from both sides of the equation.