Solve for x
x=\sqrt{7}\approx 2.645751311
x=-\sqrt{7}\approx -2.645751311
Graph
Share
Copied to clipboard
\left(x-1\right)\left(x+1\right)\left(x+2\right)=\left(x+1\right)\left(x+8\right)-\left(x-1\right)\left(x+4\right)
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x^{2}+x-2,x^{2}+3x+2.
\left(x^{2}-1\right)\left(x+2\right)=\left(x+1\right)\left(x+8\right)-\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
x^{3}+2x^{2}-x-2=\left(x+1\right)\left(x+8\right)-\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x^{2}-1 by x+2.
x^{3}+2x^{2}-x-2=x^{2}+9x+8-\left(x-1\right)\left(x+4\right)
Use the distributive property to multiply x+1 by x+8 and combine like terms.
x^{3}+2x^{2}-x-2=x^{2}+9x+8-\left(x^{2}+3x-4\right)
Use the distributive property to multiply x-1 by x+4 and combine like terms.
x^{3}+2x^{2}-x-2=x^{2}+9x+8-x^{2}-3x+4
To find the opposite of x^{2}+3x-4, find the opposite of each term.
x^{3}+2x^{2}-x-2=9x+8-3x+4
Combine x^{2} and -x^{2} to get 0.
x^{3}+2x^{2}-x-2=6x+8+4
Combine 9x and -3x to get 6x.
x^{3}+2x^{2}-x-2=6x+12
Add 8 and 4 to get 12.
x^{3}+2x^{2}-x-2-6x=12
Subtract 6x from both sides.
x^{3}+2x^{2}-7x-2=12
Combine -x and -6x to get -7x.
x^{3}+2x^{2}-7x-2-12=0
Subtract 12 from both sides.
x^{3}+2x^{2}-7x-14=0
Subtract 12 from -2 to get -14.
±14,±7,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -14 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-7=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+2x^{2}-7x-14 by x+2 to get x^{2}-7. Solve the equation where the result equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\left(-7\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 0 for b, and -7 for c in the quadratic formula.
x=\frac{0±2\sqrt{7}}{2}
Do the calculations.
x=-\sqrt{7} x=\sqrt{7}
Solve the equation x^{2}-7=0 when ± is plus and when ± is minus.
x\in \emptyset
Remove the values that the variable cannot be equal to.
x=-2 x=-\sqrt{7} x=\sqrt{7}
List all found solutions.
x=\sqrt{7} x=-\sqrt{7}
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}