Skip to main content
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

1=\frac{t\times 0.00883+1}{1.847}+\frac{t^{3}}{0.4086}E+0
Multiply 0 and 6 to get 0.
1=\frac{t\times 0.00883+1}{1.847}+\frac{t^{3}}{0.4086}E
Anything plus zero gives itself.
1=\frac{t\times 0.00883}{1.847}+\frac{1}{1.847}+\frac{t^{3}}{0.4086}E
Divide each term of t\times 0.00883+1 by 1.847 to get \frac{t\times 0.00883}{1.847}+\frac{1}{1.847}.
1=t\times \frac{883}{184700}+\frac{1}{1.847}+\frac{t^{3}}{0.4086}E
Divide t\times 0.00883 by 1.847 to get t\times \frac{883}{184700}.
1=t\times \frac{883}{184700}+\frac{1000}{1847}+\frac{t^{3}}{0.4086}E
Expand \frac{1}{1.847} by multiplying both numerator and the denominator by 1000.
t\times \frac{883}{184700}+\frac{1000}{1847}+\frac{t^{3}}{0.4086}E=1
Swap sides so that all variable terms are on the left hand side.
\frac{1000}{1847}+\frac{t^{3}}{0.4086}E=1-t\times \frac{883}{184700}
Subtract t\times \frac{883}{184700} from both sides.
\frac{t^{3}}{0.4086}E=1-t\times \frac{883}{184700}-\frac{1000}{1847}
Subtract \frac{1000}{1847} from both sides.
\frac{t^{3}}{0.4086}E=1-\frac{883}{184700}t-\frac{1000}{1847}
Multiply -1 and \frac{883}{184700} to get -\frac{883}{184700}.
\frac{t^{3}}{0.4086}E=\frac{847}{1847}-\frac{883}{184700}t
Subtract \frac{1000}{1847} from 1 to get \frac{847}{1847}.
\frac{5000t^{3}}{2043}E=-\frac{883t}{184700}+\frac{847}{1847}
The equation is in standard form.
\frac{2043\times \frac{5000t^{3}}{2043}E}{5000t^{3}}=\frac{2043\left(-\frac{883t}{184700}+\frac{847}{1847}\right)}{5000t^{3}}
Divide both sides by \frac{5000}{2043}t^{3}.
E=\frac{2043\left(-\frac{883t}{184700}+\frac{847}{1847}\right)}{5000t^{3}}
Dividing by \frac{5000}{2043}t^{3} undoes the multiplication by \frac{5000}{2043}t^{3}.
E=-\frac{2043\left(883t-84700\right)}{923500000t^{3}}
Divide \frac{847}{1847}-\frac{883t}{184700} by \frac{5000}{2043}t^{3}.