Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

1=\frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
1=\frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
1=\frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
1=\frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
1-\frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{4}=0
Subtract \frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{4} from both sides.
\frac{4}{4}-\frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{4}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{4}{4}.
\frac{4-\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{4}=0
Since \frac{4}{4} and \frac{\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{4-2}{4}=0
Do the multiplications in 4-\sqrt{\sqrt{11}-3}\sqrt{3+\sqrt{11}}\sqrt{2}.
\frac{2}{4}=0
Do the calculations in 4-2.
\frac{1}{2}=0
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\text{false}
Compare \frac{1}{2} and 0.