Solve for x
x=-12-\frac{4}{y}
y\neq 0
Solve for y
y=-\frac{4}{x+12}
x\neq -12
Graph
Share
Copied to clipboard
4=-\frac{1}{4}x\times 4y+4y\left(-3\right)
Multiply both sides of the equation by 4y, the least common multiple of y,4.
4=-xy+4y\left(-3\right)
Multiply -\frac{1}{4} and 4 to get -1.
4=-xy-12y
Multiply 4 and -3 to get -12.
-xy-12y=4
Swap sides so that all variable terms are on the left hand side.
-xy=4+12y
Add 12y to both sides.
\left(-y\right)x=12y+4
The equation is in standard form.
\frac{\left(-y\right)x}{-y}=\frac{12y+4}{-y}
Divide both sides by -y.
x=\frac{12y+4}{-y}
Dividing by -y undoes the multiplication by -y.
x=-12-\frac{4}{y}
Divide 4+12y by -y.
4=-\frac{1}{4}x\times 4y+4y\left(-3\right)
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4y, the least common multiple of y,4.
4=-xy+4y\left(-3\right)
Multiply -\frac{1}{4} and 4 to get -1.
4=-xy-12y
Multiply 4 and -3 to get -12.
-xy-12y=4
Swap sides so that all variable terms are on the left hand side.
\left(-x-12\right)y=4
Combine all terms containing y.
\frac{\left(-x-12\right)y}{-x-12}=\frac{4}{-x-12}
Divide both sides by -x-12.
y=\frac{4}{-x-12}
Dividing by -x-12 undoes the multiplication by -x-12.
y=-\frac{4}{x+12}
Divide 4 by -x-12.
y=-\frac{4}{x+12}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}